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A LINE SEARCH METHOD WITH MEMORY FOR

UNCONSTRAINED OPTIMIZATION OF NOISY FUNCTIONS

NATAŠA KREJIĆ 1, ZORANA LUŽANIN 2, FILIP NIKOLOVSKI 3,

AND IRENA STOJKOVSKA 4

Abstract. We propose a new line search method for unconstrained opti-

mization of noisy functions. The nonmonotone line search rule is based on
Ulbrich’s nonmonotone component [SIAM J. on Optimiz., 11 (4) (2001),

889–917]. The method uses only nosy functional values. Convergence un-

der standard assumptions is established. Computational results show a good
performance of the method compared with the monotone one.

1. Introduction

Let us consider the unconstrained minimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R has continuous partial derivatives. Assume that only noisy
measurements F (x) are available,

F (x) = f(x) + δ(x), (1.2)

at every x ∈ Rn, where δ(x) represents the noise at x.
There are several approaches for solving the problem (1.1). One approach

is to collect several function evaluations F (x) at each value x generated in the
optimization process, then take the average of these values as an estimate for f(x),
Andradottir [1]. While this approach is well justified for a number of problems,
it is not always possible to get an arbitrary number of function evaluation at the
same point.

Another approach is the random search method along a random search direction
dk that finds the new point xk + dk such that the following inequality is satisfied

F (xk + dk) < F (xk)− τk, (1.3)

where τk > 0 is a threshold value. The drawback of this approach is that an
inappropriate threshold value may results in rejecting many iterates, see [19].
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Among direct search methods for optimization in presence of noise is the coordi-
nate search method, Lucidi and Sciandrone [15], that searches along a coordinate
direction dk for a stepsize αk that satisfies the inequality

F (xk + αkdk) < F (xk)− γα2
k, (1.4)

where γ > 0. As smaller steps are allowed the method is more immune to the
noise influence than the threshold approach. Some of the recent methods for
optimization of noisy functions are considered in [2, 11, 12, 21, 23].

Nonmonotone line search strategies are a well developed class of methods for
classical optimization. The dominant three nonmonotone rules are originally pre-
sented in Grippo et al. [9], Li and Fukushima [14] and Zhang and Hager [24].
All of these three strategies are successfully used for solving different problems
in either derivative based or derivative-free methods, [3, 4, 7, 13, 17]. There are
several important properties of nonmonotone line search methods. First of all, one
can consider search directions which are not necessarily descent in all iterations,
further more these methods are applicable even if the gradient is not available.
And an additional property of nonmonotone line search rules that makes them
attractive is the ability of converging to a global solution of problems with multi-
ple local and global solutions. This property is reported in several papers, see for
example [24].

There are several papers dealing with unconstrained optimization problems
within line search framework and nonmonotone methods in particular, with results
that are applicable on noisy problems even if the noise is not explicitly assumed,
[4, 5, 7, 10, 15, 17]. In [10], authors proposed two nonmonotone line search strate-
gies for solving the problem (1.1) using only functional noisy values (1.2). The
line-search rules are of the following form

F (xk + αkdk) ≤ F k + ηk − α2
kβk. (1.5)

where αk is the step size, dk is the search direction. The sequences {ηk} and {βk}
are sequences of positive numbers such that

∞∑
k=0

ηk = η <∞, (1.6)

while βk is bounded and

lim
k∈K

βk = 0 ⇒ lim
k∈K
∇f(xk) = 0 (1.7)

for some infinite set of indices K ⊆ N. In [10], the term F k in the first line search
strategy is defined by

F k = max{F (xk), . . . , F (xmax{k−M+1,0})}, (1.8)

for an arbitrary but fixed M ∈ N, and in the second line search strategy F k is
defined by

Qk+1 = rkQk + 1, F k+1 =
rkQk(F k + ηk) + F (xk+1)

Qk+1
, (1.9)
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with rk ∈ [rmin, rmax], 0 ≤ rmin ≤ rmax ≤ 1, F 0 = F (x0) and Q0 = 1.
In this paper, we propose a nonmonotone line-serch rule (1.5), where the term

F k is inspired by the Ulbrich’s nonmonotone component, firstly used in the noise
free trust region framework, [20], and lately used in noise free line-search methods,
[17, 22]. Here we adopt it for noisy functional values. The convergence analysis of
the proposed method relays on results from [20, 22] but extends them in the sense
that the presented statements cover the case of noisy functional values. Some
results presented relay on the results from [10]. In practical implementation we
consider the BFGS search direction that requires approximations of gradient and
Hessian in presence of noise, and we give a gradient approximation procedure in
presence of noise. So, in Section 2 we present the model algorithm and analyze its
convergence. In Section 3 we present the numerical results. Some final remarks
are given in Section 4.

2. A new line-search strategy and convergence results

Let {Fj} be a sequence of the last mk noisy functional values, where mk =

min{k + 1, M}, for fixed M ∈ N. We define the term F k, in the line-search rule
(1.5), as following,

F k = max

{
Fk,

mk−1∑
r=0

λkrFk−r

}
, (2.1)

where λkr ≥ λ, r = 0, 1, . . . ,mk−1 are scalars such that
∑mk−1

r=0 λkr = 1, for fixed
λ ∈ (0, 1]. This nonmonotone component (2.1) is inspired by the one proposed in
[20] which uses noise free functional values in the trust region framework.

It is easy to see that
F k ≥ Fk, (2.2)

where F k is defined by (2.1).
The method that we propose is described by the following algorithm.

ALGORITHM. Given the sequence {ηk} such that (1.6) holds, the sequence
{βk} such that (1.7) holds, an initial iterate x0 ∈ Rn and D > 0.

Step 1.: Compute dk such that ‖dk‖ ≤ D.
Step 2.: Compute F k according to (2.1).
Step 3.: Choose αk such that (1.5) is satisfied.
Step 4.: Set xk+1 = xk + αkdk and k = k + 1.

The positive sequence {ηk} ensures that the the line search (1.5) is well-defined as
αk > 0 exists for an arbitrary direction dk.

For establishing the convergence of the proposed method, the following assump-
tions on the objective function and noise are made.

A1: The objective function f ∈ C1(Rn) is bounded from below i.e. there
exists m such that f(x) ≥ m for all x ∈ Rn

A2: The realized noise is bounded from above i.e there exists a constant
∆ > 0 such that for every iterate xk

|δ(xk)| ≤ ∆. (2.3)
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The boundedness of noise stated in A2 might look as a strong assumption at first,
but we are interested only in the realized noise and thus A2 is not a big obstacle
in practical implementation of the algorithm. The same set of assumptions is used
in [15].

Now we give the convergence analysis of the proposed method.

Lemma 2.1. Let {xk}k∈N is a sequence generated by the Algorithm. Then, for
every k ∈ N,

Fk ≤ F0 +

k−1∑
j=0

ηj − λ
k−2∑
j=0

α2
jβj − α2

k−1βk−1 ≤ F0 +

k−1∑
j=0

ηj − λ
k−1∑
j=0

α2
jβj .

Proof. We will prove the assertion by induction. For k = 1, since 0 < λ ≤ 1, from
(1.5) and (1.6) it follows that

F1 ≤ F0 + η0 − α2
0β0 ≤ F0 + η0 − λα2

0β0.

Let us assume that the proposition is true for all j, 1 ≤ j ≤ k. We discuss two
cases.

Case 1. Let

max

{
Fk,

mk−1∑
r=0

λkrFk−r

}
= Fk.

Then, we have

Fk+1 ≤ Fk + ηk − α2
kβk ≤

≤ F0 +

k−1∑
j=0

ηj − λ
k−1∑
j=0

α2
jβj + ηk − α2

kβk ≤

≤ F0 +

k∑
j=0

ηj − λ
k−1∑
j=0

α2
jβj − α2

kβk ≤

≤ F0 +

k∑
j=0

ηj − λ
k−1∑
j=0

α2
jβj − λα2

kβk =

= F0 +

k∑
j=0

ηj − λ
k∑

j=0

α2
jβj .

Case 2. Let

max

{
Fk,

mk−1∑
r=0

λkrFk−r

}
=

mk−1∑
r=0

λkrFk−r,

and let q = mk − 1. Then

Fk+1 ≤
q∑

p=0

λkpFk−p + ηk − α2
kβk. (2.4)
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From the inductive step we have

Fk−p ≤ F0 +

k−p−1∑
j=0

ηj − λ
k−p−2∑
j=0

α2
jβj − α2

k−p−1βk−p−1. (2.5)

Substituting (2.5) into (2.4), we have

Fk+1 ≤
q∑

p=0

λkp

F0 +

k−p−1∑
j=0

ηj − λ
k−p−2∑
j=0

α2
jβj − α2

k−p−1βk−p−1

+ ηk − α2
kβk ≤

≤

(
q∑

p=0

λkp

)
F0 +

(
q∑

p=0

λkp

)k−p−1∑
j=0

ηj

−
− λ

(
q∑

p=0

λkp

)
k−p−2∑
j=0

α2
jβj −

q∑
p=0

λkpα
2
k−p−1βk−p−1 + ηk − α2

kβk ≤

≤ F0 +

k−q−1∑
j=0

ηj − λ
k−q−2∑
j=0

(
q∑

p=0

λkp

)
α2
jβj−

−
q∑

p=0

λkpα
2
k−p−1βk−p−1 + ηk − α2

kβk ≤

≤ F0 +

k−1∑
j=0

ηj − λ
k−q−2∑
j=0

α2
jβj − λ

q∑
p=0

α2
k−p−1βk−p−1 + ηk − α2

kβk =

= F0 +

k∑
j=0

ηj − λ
k−q−2∑
j=0

α2
jβj − λ

k−1∑
p=k−q−1

α2
pβp − α2

kβk =

= F0 +

k∑
j=0

ηj − λ
k−1∑
j=0

α2
jβj − α2

kβk ≤ F0 +

k∑
j=0

ηj − λ
k∑

j=0

α2
jβj ,

which proves the lemma. �

We need the result from Lemma 2.1 to prove the following theorem.

Theorem 2.1. Let {xk}k∈N is a sequence of iterates generated by the Algorithm
and let assumptions A1 and A2 hold. Then

lim
k→∞

α2
kβk = 0.

Proof. From Lemma 2.1 and (1.6), for every k ∈ N, we have

Fk ≤ F0 +

k−1∑
j=0

ηj − λ
k−1∑
j=0

α2
jβj ≤ F0 + η − λ

k−1∑
j=0

α2
jβj .
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From (1.2) and assumption A2 we have

fk+1 ≤ f0 + η − λ
k∑

j=0

α2
jβj + 2∆.

Now, using assumption A1 we have

λ

k∑
j=0

α2
jβj ≤ f0 + η + 2∆− fk+1 ≤ f0 + η + 2∆−m.

So,

λ

∞∑
j=0

α2
jβj <∞,

and because λ > 0 we conclude that

lim
k→∞

α2
kβk = 0.

�

Let us define a sequence {δk} with

δk = sup
x∈Bk

|δ(x)|,

where Bk is the closed ball

Bk = {x ∈ Rn | ‖xk − x‖ ≤ D} ,
and D is the upper bound on the length of the search directions dk.

Following two theorems that are valid for nonmonotone terms (1.8) and (1.9),
see [10], can be also proved for the nonmonotone term (2.1), using Theorem 2.1
and the inequality (2.2).

Theorem 2.2. Let {xk} be a sequence generated with the Algorithm and let
the assumptions A1 and A2 hold. Let (x∗, d) be a limit point of the sequence
{(xk, dk)}k∈K where K ⊆ N is an infinite set od indices such that limk∈K α2

kβk = 0.
Additionally, let us assume that

lim
k∈K

δk
αk

= 0.

Then
g(x∗)T d ≥ 0.

Proof. See proof of Theorem 3.3 in [10]. �

Theorem 2.3. Assume that all conditions from Theorem 2.2 hold. Let 0 < θ < 1
and 0 < d < D < ∞. Let us assume that the level set Ω = {x ∈ Rn

∣∣ f(x) ≤
f0 + η + 2∆} is bounded and that K1 ⊆ K is an infinite set of indices such that
for any k ∈ K1, there exists a search direction dk such that

d ≤ ‖dk‖ ≤ D and g(xk)T dk ≤ −θ‖g(xk)‖‖dk‖. (2.6)

Then, for all ε > 0, there exists k ∈ N such that ‖g(xk)‖ ≤ ε.
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Proof. See proof of Theorem 3.4 in [10]. �

3. Numerical results

The algorithm has been tested on a set of 18 problems from the Moré-Garbow-
Hillstrom collection [16]. All problems have objective function of the form f(x) =∑m

i=1 f
2
i (x). The test functions as well as the dimensions n and the initial points

x0 are given in Appendix A.
The noisy measurements of the objective function are obtained with the sim-

ulated normally distributed noise ε ∼ N (0, σ2) that is multiplied with the exact
functional value to obtain F (x) = f(x)(1 + ε) at each point xk generated by the
algorithm. Two different noise levels are tested σ = 1 and σ = 10.

The gradient approximation with centered differences is implemented using the
noisy function values as follows. For a positive sequence {hk}, the gradient of f
at xk is approximated with ĝk, given by

[ĝk]j =
F (xk + hkej)− F (xk − hkej)

2hk
, j = 1, 2, ..., n, (3.1)

where ej is jth coordinate vector. The choice of hk is crucial for the approximation
of the gradient in presence of noise, see [10]. We have established empirically that
the choice hk = 3σ, where σ is the noise level, is appropriate for the test collection
we considered.

For testing the algorithm proposed here, we choose the BFGS search direction
dk of the form

dk = −Hkĝk,

where the inverse Hessian approximation is updated by the formula

Hk+1 =
(
I − ρskyTk

)
Hk

(
I − ρyksTk

)
+ ρsks

T
k (3.2)

for all k = 0, 1, . . . , with H0 = I, sk = xk+1−xk, yk = ĝk+1−ĝk, ρ = 1/(yTk sk) and
rescaling the initial approximation H0, see [18]. If the positive curvature condition
yTk sk > 0 is not satisfied, we set Hk+1 = Hk.

We set M = 4, λ = 0.01 and we choose scalars λkr as following: first we find
the index p, 0 ≤ p < mk, such that Fk−p = max {Fk−r | 0 ≤ r < mk} and set

λkr =

{
λ, if r 6= p

1− (mk − 1)λ, if r = p

The sequences ηk and βk in the line-search rule (1.5) are chosen as ηk =
|F (x0)|/k1.1 and βk ≡ 1, for all k ∈ N.

The initial step length tested in Step 3 of Algorithm is α = 1. If the line search
rule (1.5) is not satisfied then a smaller step is computed using the safeguarded
quadratic interpolation, [6].

We have compared the nonmonotone line-search rule (1.5) to the monotone one
defined by

F (xk + αkdk) ≤ F (xk)− α2
kβk. (3.3)
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Figure 1. Performance profile for noise levels σ = 1 (top) and
σ = 10 (bottom)

For each problem 50 independent test-runs have been made. We consider a test
run successful if the stopping criterium

|F (xk)| < (1 + 2σ) · |F (x0)| · 10−3, (3.4)

is satisfied before exceeding the maximal number of 400 · n function evaluations.
For each run we record the number of function evaluations, and we denote

by ϕij the average number of function evaluations needed for the method i to
solve the problem j, in successful runs. To compare the performances of the
nonmonotone and monotone method, we use the performance profiles defined in
[8]. The performance measure that we use is

πij = 50 · ϕij/Nij ,
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where Nij is the number of successful runs out of the 50 for the method i solving
the problem j. The performance profiles are shown in Figure 1.

Based on results on Figure 1, we can conclude that the nonmonotone method
we proposed is moderately better than the monotone one. This indicates that
we have successfully implemented yet another nonmonotone and derivative-free
method that performs better than the monotone method in presence of noise.

4. Conclusions

We defined a new nonmonotone line-search method for optimization in presence
of noise. We analyzed the convergence of the proposed method and we tested it
and compared it with the monotone one. Results show that the nonmonotone
method is moderately better than the monotone one. There is some space for
improvement however, if other parameter values are taken. For example, chang-
ing the value of λ, the choice of the scalars λkr or the value of M may result
in a more efficient algorithm, and comparable to other nonmonotone methods.
There is an opportunity this method to be used in a combination with stochastic
approximation (SA), see for example [11, 12].
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Appendix A.
Problem n x0

Helical valley function 3 (−1, 0, 0)

Biggs EXP6 function 6 (10, 20, 10, 10, 10, 10)

Gaussian function 3 (4, 10, 0)

Powell badly scaled function 2 (0, 5)

Box three-dimensionaly function 3 (0, 10, 20)

Variably dimensioned function 10 (9/10, 8/10, ..., 0)

Watson function 6 (0, 0, ..., 0)

Penalty function I 4 (1, 2, 3, 4)

Penalty function II 4 (5/2, 5/2, 5/2, 5/2)

Brown badly scaled function 2 (1, 1)

Brown and Dennis function 4 (25, 5,−5, 1)

Gulf research and development function 3 (5, 2.5, 0.15)

Trigonometric function 10 (1, 1, ..., 1)

Extended Rosenbrock function 10 (−1.2, 1, ...,−1.2, 1)

Extended Powell singular function 12 (3,−1, 0, 1, ..., 3,−1, 0, 1)

Beale function 2 (1, 1)

Wood function 4 (−3,−1,−3,−1)

Chebyquad function 10 (5/11, 10/11, ..., 50/11)

Table 1. Test problems


