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Abstract

In this paper stochastic approximation (SA) algorithm with a new
adaptive step size scheme is proposed. New adaptive step size scheme
uses a fixed number of previous noisy function values to adjust steps
at every iteration. The algorithm is formulated for a general descent
direction and almost sure convergence is established. The case when
negative gradient is chosen as a search direction is also considered.
The algorithm is tested on a set of standard test problems. Numerical
results show good performance and verify efficiency of the algorithm
compared to some of existing algorithms with adaptive step sizes.
Key words. unconstrained optimization, stochastic optimization,
stochastic approximation, noisy function, adaptive step size, gradient
method, descent direction

1 Introduction

The main objective of this paper is to propose a new method for solving an
optimization problem in noisy environment

min
x∈Rn

f(x), (1)
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where f : Rn → R is a continuously differentiable, possibly nonconvex func-
tion bounded below on Rn. We assume that true values of the objective func-
tion f(x) and its gradient ∇f(x) = g(x) are not available but measurable
with an error term of stochastic nature. Namely, only noisy measurements
of the objective function and gradient are available at all x ∈ Rn, i.e.

F (x) = f(x) + ξ and G(x) = g(x) + ε, (2)

where ξ and ε are random variable and random vector, respectively, defined
on a probability space (Ω,F , P ). Also, we will suppose that there is a unique
solution x∗ ∈ Rn of the problem (1).

The notation that we use throughout the paper is

Fk = Fk(xk) = f(xk) + ξk = fk + ξk

Gk = Gk(xk) = g(xk) + εk = gk + εk, (3)

where the index k used with ε and ξ allows us to consider the case when
the noise depends on the current iterate xk i.e. the case when the noise-
generating process may change with k.

The simple approach for solving problem (1) is introduced in the seminal
paper of Robbins and Monro, [1]. The method is called Stochastic Approx-
imation (SA) algorithm or RM algorithm. Iterative rule of SA algorithm is
inspired by deterministic gradient algorithm. However, instead of a gradient
direction it uses available noisy gradient observation Gk at a current iterate
xk, so the next iterate xk+1 is calculated as:

xk+1 = xk − akGk, k = 0, 1, 2, ... (4)

where ak is a nonnegative step size. The convergence of SA algorithm is
achievable in a stochastic sense under suitable conditions. Robbins and
Monro, [1], established a mean square (m.s.) convergence, i.e. xk → x∗ in m.s.,
that is E[‖xk − x∗‖2] → 0 as k →∞, while other authors proved the almost
sure (a.s.) convergence, i.e. xk → x∗ a.s. (see [2, 3]). Besides reliance on
the noisy gradient evaluations, iterative rule of SA algorithm (4) depends
heavily on the choice of the step size sequence. The choice of the step size
sequence determines the rate of convergence (see Spall [3] for details). The
most used step size sequence is the scaled harmonic sequence ak = a/(k +1),
where a > 0. A common generalization of the scaled harmonic sequence is
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ak = a/(k + 1)α, where a > 0, and 1/2 < α ≤ 1. In addition to harmonic
sequences, one of the most used step size length has the form

ak =
a

(k + 1 + A)α
, (5)

where a > 0, 1/2 < α ≤ 1 and A ≥ 0 is a stability constant which allows
taking larger a without risking unstable behaviour in early iterations (for
details see [4]). Although ensuring convergence, the step sizes proportional
to 1/k, result in quite slow progress.

Plenty of attempts have been proposed in the literature to improve the SA
algorithm. All attempts stand on modifications of the step size and/or search
direction selection in (4). Modifications based on step size are discussed in
[3, 4, 5, 6, 7, 8, 9], while modification based on search direction are analysed,
for example, in [4, 10, 11, 12, 13, 14].

In this paper we focus on a modification of SA algorithm based on adap-
tive step sizes. The main idea is to adjust the step size in each iteration ac-
cording to some criterion in order to achieve progress compared to previous
iterations. The most popular criterion for step size adjustment is proposed
by Kesten in [5]. In this scheme, the step sizes are adjusted according to
the frequency of sign changes of the differences between two successive iter-
ations. The same signs indicate that the current iterate is far away from the
solution and that larger step size should be taken in the next iterate. On
the contrary, the smaller step size should be used when there are frequent
sign changes which means that the current iterate is close to the solution.
This idea is further considered in [6, 7]. One of the newest schemes, [8],
suggests that step size sequence should be a piecewise-constant decreasing
function with decrease that occurs when a suitable error threshold is met.
This scheme is designed for strongly convex differentiable problems. There
are also combinations of SA algorithm with other optimization techniques.
For example, the combination of gradient method with line-search and SA
step sizes is proposed in [9]. This approach combines line search technique
along the negative gradient direction while the iterates are far away from
the solution, switching to SA rule when neighbourhood of the solution is
reached. The two-phase method is also proposed for general descent direc-
tion in [11]. The second-order methods have faster progress while keeping
the almost sure convergence. For example, SA algorithm with quasi-Newton
direction is successfully applied in [15, 16, 17, 18].

In this paper we propose a general descent direction SA algorithm with a
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new adaptive step size scheme. The suggested step size scheme combines the
ideas from statistical theory and numerical optimization. A new criterion
for adjusting the step sizes tracks fixed number of previous noisy function
values and ensures a faster progress of the algorithm when it is expected that
larger steps will improve the performance of the algorithm. A guidance for
choice of the step size length is suggested. This approach allows the step size
sequence to be a sequence of random variables. We also consider separately
the case when descent direction is a negative gradient direction. Almost sure
convergence is established and algorithms are tested on a set of standard test
problems.

The organization of the paper is the following. Section 2 briefly reviews
both the gradient method and descent direction method with SA steps. A
new step size scheme, algorithm and convergence theory are presented in
Section 3. Finally, numerical results are given in Section 4, while conclusions
are drawn in Section 5.

2 Preliminaries

For a given initial approximation x0 of the optimal solution x∗, SA iterative
rule is given by (4). The standard convergence conditions for the step size
sequence {ak} are

ak > 0,
∑

k

ak = ∞ and
∑

k

a2
k < ∞. (6)

The conditions (6) imply that the step size ak should decay neither too
fast, nor too slow. The condition

∑
k ak = ∞ provides that the step size

sequence should approach zero sufficiently slow in order to avoid false con-
vergence. The condition

∑
k a2

k < ∞ provides sufficiently fast decay of step
size sequence in order to avoid influence of the noise when the iterates come
close to the optimal solution. These conditions are most relevant from user’s
input point of view.

Let {xk} be a sequence generated by SA method (4). Denoted by Fk is
the σ̂-algebra generated by x0, x1, . . . , xk. The set of standard assumptions
which ensures the convergence of SA algorithm (4) is the following, [2]:

A1 For any δ > 0 there is βδ > 0 such that

inf
||x−x∗||>δ

(x− x∗)T g(x) = βδ > 0.
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A2 The observation noise (εk,Fk+1) is a martingale difference sequence
with

E(εk|Fk) = 0 and E[||εk||2] < ∞ a.s for all k,

where {Fk} is a family of nondecreasing σ̂-algebras.

A3 The gradient g and the conditional second moment of the observation
noise have the following upper bound

||g(x)||2 + E(||εk||2|Fk) < c(1 + ||x− x∗||2) a.s. for all k and x ∈ Rn,

where c > 0 is a constant.

Assumption A1 is a condition on the shape of g(x), assumption A2 is
classical mean-zero condition, while assumption A3 gives restrictions on the
magnitude of g(x).

The main convergence result for SA method (4) is the following.

Theorem 2.1 [2] Assume that A1-A3 hold. Let {xk} be a sequence gener-
ated by SA method (4) with the gain sequence {ak} satisfying (6). Then the
sequence {xk} converges to x∗ for an arbitrary initial approximation x0.

SA method (4) can be extended to a descent direction form. Here we
present the descent direction method proposed by Krejić et al. in [11]. Di-
rection dk is a descent direction at xk if

GT
k dk < 0, (7)

where Gk is the noisy gradient at xk. For a given initial approximation x0,
iterative rule of the descent direction form of SA method is given by

xk+1 = xk + akdk, (8)

where dk is a descent direction and {ak} is the sequence of positive gain
coefficients.

Convergence of the SA method with descent direction (8) is achievable
in a stochastic sense under the set of conditions analogous the classical SA
method (4).

Again, let {xk} be a sequence generated by (8) and Fk is the σ̂-algebra
generated by x0, x1, . . . , xk. We give two new assumptions, [11]:
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A4 There exist c1 > 0 such that direction dk satisfies

(xk − x∗)T E(dk|Fk) ≤ −c1||xk − x∗|| a.s. for all k.

A5 There is c2 > 0 such that

||dk|| ≤ c2||Gk|| a.s. for all k.

The assumption A4 limits the influence of noise on dk, while the assump-
tion A5 connects of the available noisy gradient with the descent direction.

The convergence theorem for the stochastic approximation method with
descent direction (8) is the following.

Theorem 2.2 [11] Assume that A2-A5 hold. Let {xk} be a sequence gen-
erated by (8) with the gain sequence {ak} satisfying (6). Then the sequence
{xk} converges to x∗ a.s. for an arbitrary initial approximation x0.

3 New Stochastic Approximation Algorithm

3.1 The Step Size Scheme and the Algorithm

As emphasized in Section 1, the performance of SA algorithm largely depends
on the choice of the step size sequence. An adaptive step size selection with
a suitable criterion for adoption can significantly enhance its performance.
Motivated with this fact, we propose a new adaptive step size scheme that
can be successfully applied to both, gradient and general descent direction
methods.

While determining the step size ak, we place emphasis on tracking the
previously observed function values Fk−1, Fk−2, ..., Fk−m, for some fixed
m ∈ N, to get insight into whether the objective function is improving. The
formulation of our adaptive step size scheme is the following:

ak =





aθsk , Fk < 1
m(k)

∑m(k)
j=1 Fk−j − σ̂

0, Fk > 1
m(k)

∑m(k)
j=1 Fk−j + σ̂,

a
(tk+1+A)α , otherwise

(9)

where σ̂ > 0 and

• m ∈ N, m(k) = min{k,m}, θ ∈ (0, 1), a > 0, A ≥ 0, 0.5 < α ≤ 1,
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• sk = sk−1 + I
{

Fk < 1
m(k)

∑m(k)
j=1 Fk−j − σ̂

}
, for k = 1, 2, ..., and s0 = 0,

• tk = tk−1 + I
{

1
m(k)

∑m(k)
j=1 Fk−j − σ̂ ≤ Fk ≤ 1

m(k)

∑m(k)
j=1 Fk−j + σ̂

}
, for

k = 1, 2, ..., and t0 = 0,

where I(·) denotes the indicator function.
As can be seen from (9), in kth iteration we construct an interval

Jk = (
1

m(k)

m(k)∑
j=1

Fk−j − σ̂,
1

m(k)

m(k)∑
j=1

Fk−j + σ̂)

based on m(k) previously observed (noisy) function values Fk−1, Fk−2, ..., Fk−m(k).
If the observed (noisy) function value in kth iterate Fk, is less than the lower
limit of the interval, we consider this scenario to be good, since it represents
a ”sufficient” decrease of the objective function. In this case we suggest us-
ing a larger step size in the next (k + 1)th iteration. For the larger step, our
initial idea was to use a constant full step size, ak = a. Nevertheless, inspired
by [8] we chose ak = aθsk , which for large k and large θ still remains large in
comparison to step size of the form (5), and we can still obtain properties of
the sequence {ak}, suitable for convergence analysis. If the observed (noisy)
function value in kth iterate Fk is greater than the upper limit of the inter-
val, we reject the current iterate, i.e. zero step size is used, and in this way
we block the bad steps, as implemented, for example in [14]. Otherwise, if
Fk lies in the interval, we propose a backup step size of the form similar to
classical SA step size (5).

The inspiration for intervals Jk is drawn from the interval estimation
theory. If an observed function value Fk is considered as an estimate of the
optimal function value f ∗ = f(x∗), than the sequence of the observed function
values Fk−1, Fk−2, ..., Fk−m(k) can be considered as its sample of length m(k).
So, the interval Jk can be viewed as a confidence-like interval for the expected
optimal function value f ∗, since it is symmetrical about the sample mean

1
m(k)

∑m(k)
j=1 Fk−j. And if the next estimate Fk of f ∗ is in the interval Jk, we

decide to proceed with slow but safe steps of the form similar to (5).
Using the adaptive scheme (9) we propose the following algorithm.

ALGORITHM 1 Mean-Sigma Stochastic Approximation (MS)

Step 0. Initialization. Choose an initial point x0 ∈ Rn, constants σ̂ > 0,
m ∈ N, θ ∈ (0, 1), a > 0, A ≥ 0 and 0.5 < α ≤ 1. Set k = 0.
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Step 1. Direction selection. Choose dk such that (7) holds.

Step 2. Step size selection. Calculate the noisy function measurement Fk

and select the step size ak according to the criterion (9).

Step 3. Update iteration. Calculate xk+1 = xk + akdk, set k = k + 1 and go
to Step 1.

A special case of Algorithm 1 is when a negative noisy gradient is chosen
as the search direction i.e dk = −Gk.

Algorithm 1 might be more costly in comparison to SA algorithms (4)
and (8). It requires an additional measurement of value Fk at each iteration.
However, we believe that tracking of the values of the objective function may
considerably improve the knowledge about the optimization process. The
similar reasoning that using observed function values to accept or reject steps
can improve the algorithm’s stability is disscused in [3, 14]. This is also a
feature by which our algorithm differs from the algorithms with adaptive step
sizes in [6, 7]. Thus, an additional measurement at each iteration might be
sometimes a good decision, as our numerical results will demonstrate. On the
other hand, Algorithm 1 might be a good choice for derivative-free settings,
when we must rely on the noisy functional values. In this case, the gradient
should be approximated using only functional values, for example with finite
differences. We did not consider this case in our numerical experiments, since
we suppose that the noisy gradient measurements are known.

Algorithm 1 is defined and its convergence is established (in subsections
that follow) for an arbitrary constant σ̂ > 0. But, in practical implementation
of the algorithm, as shown in the numerical section, the choice of the constant
σ̂ is closely related to the noise level. Namely, it can be easily shown that
in the case of an independent and identically distributed ”white noise” with
variance σ2, i.e. E(ξk) = 0 and V ar(ξk) = σ2, for all k, the mean-square
error (MSE) of the function value estimator Fk of the optimal value f ∗ is
equal to σ2 +(fk− f ∗)2, where fk = f(xk) is true function value at xk. Now,
since the variance of the sampling distribution of Fk is often approximated
reasonably well by MSE of Fk (see [19]), it is justified to relate the noise level
σ to the constant σ̂ in the interval Jk.
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3.2 Properties of the Adaptive Step Size Sequence

In this subsection we analyze the step size sequence {ak} generated by the
adaptive step size scheme (9). The adaptive step size scheme (9) forms a
sequence of random variables. In order to establish a convergence of the pro-
posed algorithm we will show that the sequence {ak} satisfies the conditions
(6) a.s. under reasonable assumptions on the noise terms.

By using the introduced notations (3), we impose the following conditions
on the noise terms ξk:

ξk, k = 0, 1, 2, ... are i.i.d. continuous random variables with a common

probability density function (pdf) p(x) > 0 a.s. for all x ∈ R (10)

The conditions (10) do not have any real restrictions, since the noise usually
occurs independently. An example of the noise that satisfies conditions (10)
is independent identically distributed normal Gaussian noise which is also
used in our numerical experiments.

We start analysing the step size sequence {ak} by focusing on the following
event

Ak =
{
ak−1 = ak−2 = . . . = ak−m(k) = 0

}
. (11)

Realization of the event Ak means that m(k) consecutive zero steps occurred.

Lemma 3.1 Let the step sizes ak be defined by (9). If the noise terms ξk

satisfy the conditions (10), then for k = 1, 2, . . ., the following inequality
holds

P (Ak) > 0, (12)

where Ak is the event defined by (11).

Proof. Lemma states that m(k) consecutive zero steps occur with nonzero
probability. We will prove it by assuming the contrary, i.e. let us assume
that there exists k such that

0 = P (Ak) = P (Fk−i >
1

m(k)

m(k)∑
j=1

Fk−i−j + σ̂, i = 1, 2, . . . , m(k)). (13)

Let us consider the events
{
Fk−i > max1≤j≤m(k) Fk−i−j + σ̂

}
, i = 1, 2, ...,m(k).
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Obviously,

{
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ̂

}
⊆



Fk−i >

1

m(k)

m(k)∑
j=1

Fk−i−j + σ̂



 ,

for each i = 1, 2, ..., m(k), so

m(k)⋂
i=1

{
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ̂

}
⊆

m(k)⋂
i=1



Fk−i >

1

m(k)

m(k)∑
j=1

Fk−i−j + σ̂



 ,

which further implies

P (Fk−i > max
1≤j≤m(k)

Fk−i−j + σ̂, i = 1, 2, ..., m(k))

≤ P (Fk−i >
1

m(k)

m(k)∑
j=1

Fk−i−j + σ̂, i = 1, 2, ..., m(k)). (14)

Relations (13) and (14) imply

P (Fk−i > max
1≤j≤m(k)

Fk−i−j + σ̂, i = 1, 2, . . . , m(k)) = 0. (15)

Let us now define a δ-neighbourhood of the optimal value f ∗ = f(x∗). We
say, y is in δ-neighbourhood of the optimal value f ∗ if |y − f ∗| < δ, where
δ > 0. Next, denote by Bk

δ
2

the event

Bk
δ
2

=

{
fk−i is in

δ

2
− neighbourhood of the optimal value f ∗, i = 1, 2, . . . , 2m(k)

}
.

Now, we chose δ > 0 such that

P (Bk
δ
2

) > 0. (16)

Note that such δ > 0 exists. For example, we can take

δ = 2 ∗ max
1≤i≤2m(k)

|fk−i − f ∗|+ 1.

For this choice of δ, actually we have P (Bk
δ
2

) = 1.
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Now,

0 = P

(
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ̂, i = 1, 2, . . . ,m(k)

)

≥ P

(
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ̂, i = 1, 2, . . . ,m(k)

∣∣Bk
δ
2

)
P (Bk

δ
2

).(17)

So, (16) and (17) imply

P

(
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ̂, i = 1, 2, . . . , m(k)

∣∣Bk
δ
2

)
= 0. (18)

Under the realization of the event Bk
δ
2

, it can be shown that

fk−i − δ < fk−j < fk−i + δ, (19)

for all i, j = 1, 2, ..., 2m(k). Now, using (19), under the realization of the
event Bk

δ
2

, the inequality

ξk−i > max
1≤j≤m(k)

ξk−i−j + σ̂ + δ

implies

Fk−i > max
1≤j≤m(k)

Fk−i−j + σ̂,

and this is true for any i = 1, 2, . . . , m(k). Therefore

0 = P

(
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ̂, i = 1, 2, . . . , m(k)

∣∣Bk
δ
2

)

≥ P

(
ξk−i > max

1≤j≤m(k)
ξk−i−j + σ̂ + δ, i = 1, 2, . . . ,m(k)

∣∣Bk
δ
2

)

= P

(
ξk−i > max

1≤j≤m(k)
ξk−i−j + σ̂ + δ, i = 1, 2, . . . ,m(k)

)
, (20)

since the last conditional probability is independent of the condition. Rela-
tion (20) implies

P

(
ξk−i > max

1≤j≤m(k)
ξk−i−j + σ̂ + δ, i = 1, 2, . . . , m(k)

)
= 0. (21)
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Now,

0 = P

(
ξk−i > max

1≤j≤m(k)
ξk−i−j + σ̂ + δ, i = 1, 2, . . . ,m(k)

)

= P (ξk−i > ξk−i−j + σ̂ + δ, i, j = 1, 2, . . . , m(k))

≥ P
(
ξk−1 > ξk−2 + σ̂ + δ > ξk−3 + 2(σ̂ + δ) > . . . > ξk−2m(k) + (2m(k)− 1)(σ̂ + δ)

)

= I(σ̂ + δ). (22)

On the other hand,

I(σ̂ + δ) =

∫ ∞

−∞
p(xk−1)

∫ xk−1−(σ̂+δ)

−∞
p(xk−2) · · ·

∫ xk−2m(k)+1−(2m(k)−1)(σ̂+δ)

−∞
p(xk−2m(k)) dxk−1dxk−2...dxk−2m(k) > 0

almost surely for all δ > 0, since p(x) > 0 a.s. by condition (10), and I(δ) is
a decreasing function, which is in contradiction with (22). This implies that
P (Ak) > 0 for all k.

Now, when we know that in each iteration, m(k) consecutive zero steps
may occur with non zero probability, we can state the following lemma for
probability distribution of the step sizes ak.

Lemma 3.2 Let the step sizes ak be defined by (9). If the noise terms ξk

satisfy the conditions (10), then for all k = 1, 2, . . .

P (ak = 0|Ak) > 0, (23)

P (ak = aθsk |Ak) > 0, (24)

and
P (ak =

a

(tk + 1 + A)α
|Ak) > 0, (25)

where Ak is the event defined by (11). Moreover, for all k = 1, 2, ...

P (ak = 0) > 0, (26)

P (ak = aθsk) > 0, (27)

and
P (ak =

a

(tk + 1 + A)α
) > 0. (28)
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Proof. First note that the conditional probabilities (23)-(25) are well defined
because of Lemma 3.1. Then, under the realization of the event Ak we have
fk = 1

m(k)

∑m(k)
j=1 fk−j.

Let us start with proving the first probability (23). According to step
size rule (9) we have

P (ak = 0|Ak) = P (Fk >
1

m(k)

m(k)∑
j=1

Fk−j + σ̂|Ak)

= P (fk + ξk >
1

m(k)

m(k)∑
j=1

(fk−j + ξk−j) + σ̂|Ak)

= P (ξk >
1

m(k)

m(k)∑
j=1

ξk−j + σ̂|Ak)

= P (ξk − 1

m(k)

m(k)∑
j=1

ξk−j > σ̂), (29)

since the conditional probability is independent of the condition. Let us
denote variable Yk by

Yk = ξk − 1

m(k)

m(k)∑
j=1

ξk−j, (30)

and by pYk
(·) its pdf. We can think of Yk as a difference of two random

variables, ξk with pdf p(·) and Zk,m(k) = 1
m(k)

∑m(k)
j=1 ξk−j with pdf pk,m(k)(·).

By the convolution formula for two independent random variables X and Y ,
the pdf of their sum X + Y is

pX+Y (z) =

∫ ∞

−∞
pY (z − t)pX(t)dt. (31)

where pX(·) is pdf of X, and pY (·) is pdf of Y . Now, using (31) we can derive
recursively the distribution of the random variable Zk,m(k), since ξk are all
independent random variables, by condition (10). The derived probability
density function pk,m(k)(·) is always positive because it only depends on p(·)
which is, by condition (10), always positive. Now, the pdf of Yk is

pYk
(y) =

∫ ∞

−∞
p(t)pk,m(k)(y − t)dt, (32)
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and it is always positive, since p(·) and pk,m(k)(·) are always positive. If we
implement these findings in (29), we will have

P (ak = 0|Ak) = P (Yk > σ̂) =

∫ ∞

σ̂

pYk
(y)dy > 0. (33)

Similarly, we have

P (ak = aθsk |Ak) = P (Yk < −σ̂) =

∫ −σ̂

−∞
pYk

(y)dy > 0 (34)

and

P (ak =
a

(tk + 1 + A)α
|Ak) = P (−σ̂ ≤ Yk ≤ σ̂) =

∫ σ̂

−σ̂

pYk
(y)dy > 0, (35)

since σ̂ > 0. Additionally, from Lemma 3.1 and (33)-(35), for all k = 1, 2, ...
we have

P (ak = 0) ≥ P (ak = 0|Ak) · P (Ak) > 0, (36)

P (ak = aθsk) ≥ P (ak = aθsk |Ak) · P (Ak) > 0, (37)

and

P (ak =
a

(tk + 1 + A)α
) ≥ P (ak =

a

(tk + 1 + A)α
|Ak) · P (Ak) > 0, (38)

which completes the proof.

Previous Lemma 3.2 leads to important results which are stated below.

Lemma 3.3 Let the step sizes ak be defined by (9). If the noise terms ξk

satisfy the condition (10), then almost surely there are infinitely many steps
ak = a

(tk+1+A)α and infinitely many steps ak = aθsk .

Proof.
Let us first consider the sequence of events Tk =

{
ak = a

(tk+1+A)α

}
, k =

1, 2, 3, . . . . Define {Tk i.o.} as the event that an infinite number of events
Tk, k = 1, 2, 3, . . . occur. The i.o. stands for infinitely often. We will show
that event {Tk i.o.} occurs almost surely, i.e.

P ({Tk i.o.}) = P ({w|w ∈ Tk for infinite many k ∈ {1, 2, 3, ...}}) = 1. (39)
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Let us consider the subsequence
{
Tk(m+1)

}
k

of the sequence {Tk}k. It is a
sequence of independent events, because they depend on different random
variables ξk, which are independent by (10). The event {Tk(m+1) i.o.} is a
member of the tail σ-algebra

⋂∞
k=1

{
σ(Tn(m+1)), n ≥ k

}
. Therefore, we can

apply Kolmogorov 0− 1 law which states that for a sequence of independent
events, probability of any tail event is 0 or 1, [20]. According to Kolmogorov
0− 1 law,

P ({Tk(m+1) i.o.}) ∈ {0, 1} . (40)

Let us assume that
P ({Tk(m+1) i.o.}) = 0. (41)

Because of the inclusion

∞⋂

k=1

Tk(m+1) ⊆ {Tk(m+1) i.o.},

we have that

P

( ∞⋂

k=1

Tk(m+1)

)
≤ P ({Tk(m+1) i.o.}),

that together with (41) imply

P

( ∞⋂

k=1

Tk(m+1)

)
= 0. (42)

As we mentioned before, Tk(m+1), k = 1, 2, 3, ... are independent events, so
(42) is equivalent to

∞∏

k=1

P (Tk(m+1)) = 0, (43)

which implies that there exists k0 ∈ N such that P (Tk0(m+1)) = 0 i.e.
P (ak0 = a

(tk0
+1+A)α ) = 0 which is in contradiction to (28) from Lemma 3.2.

Therefore,
P ({Tk(m+1) i.o.}) > 0. (44)

The relation (44) together with (40) implies

P ({Tk(m+1) i.o.}) = 1. (45)
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Now, because of the inclusion

{Tk(m+1) i.o.} ⊆ {Tk i.o.}, (46)

we have that
P ({Tk(m+1) i.o.}) ≤ P ({Tk i.o.}), (47)

that together with (45) imply (39), i.e. almost surely there are infinitely
many steps ak = a

(tk+1+A)α . Analogously, we can show that almost surely
there are infinitely many steps ak = aθsk , which completes the proof.

Remark 3.1 As a consequence of Lemma 3.3 we have that almost surely
infinitely many successive steps ak = 0 cannot occur, since almost surely
there are infinitely many non zero steps. This finding will help us during the
practical implementation of the Algorithm 1. We can impose a correction
condition and constrain the number of consecutive zero step in the following
way. If there are some predefined number of successive steps ak = 0, then in
the next iteration we are going to take a non zero safe step of the form (5).

Lemma 3.3 helps us to show that the step size sequence {ak} satisfies
conditions (6) a.s.

Theorem 3.1 If the noise terms ξk satisfy the condition (10), then the step
size sequence {ak}, defined by (9), satisfies the conditions (6) a.s.

Proof. If we denote by C = {k|Fk < 1
m(k)

∑m(k)
j=1 Fk−j − σ̂} and

D = {k| 1
m(k)

∑m(k)
j=1 Fk−j − σ̂ ≤ Fk ≤ 1

m(k)

∑m(k)
j=1 Fk−j + σ̂}, then by the

definition of the sequence {ak}, the equation (9), we have

∑

k

ak =
∑

k∈C

aθsk +
∑

k∈D

a

(tk + 1 + A)α
=

∑

k

aθk +
∑

k

a

(k + 1 + A)α
= ∞,

and
∑

k

a2
k =

∑

k∈C

(aθsk)2+
∑

k∈D

(
a

(tk + 1 + A)α
)2 =

∑

k

(aθk)2+
∑

k

(
a

(k + 1 + A)α
)2 < ∞,

almost surely, since almost surely we have infinitely many steps ak = aθsk

and infinitely many steps ak = a
(tk+1+A)α by Lemma 3.3. So, the step size

sequence {ak} satisfies the conditions (6) a.s.
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3.3 Convergence Analysis

In this subsection, we establish the convergence of the Algorithm 1. We
discuss separately a case when direction is a negative gradient.

The previously mentioned SA convergence theorems, Theorem 2.1 and
Theorem 2.2, assume deterministic step sizes ak that satisfy conditions (6).
In order to use these results when step sizes ak are stochastic, we need to
assume the following. The steps ak are Fk-measurable, where Fk is the σ-
algebra generated by x0, x1, x2, ..., xk, and {xk} is a sequence generated by
the corresponding algorithm. Therefore, we are not allowed to use informa-
tion from (k + 1)th iteration to compute ak, similar to the assumption in
[21]. We also need to assume that conditions (6) are satisfied almost surely
(a.s.). Under these additional assumptions, the SA convergence theorems,
Theorem 2.1 and Theorem 2.2, also hold when step sizes ak are stochastic.

Theorem 3.1 ensures that the step sizes ak generated by Algorithm 1
satisfies the conditions (6) almost surely. Due to the convergence theorem
for descent direction method with SA step sizes, Theorem 2.2, it follows that
assumptions A2-A5 and Theorem 3.1 ensure almost surely convergence of
Algorithm 1. Thus, we have the following convergence result for the method
with adaptive step sizes proposed in Algorithm 1.

Theorem 3.2 Assume that A2-A5 hold. Let {xk} be a sequence generated
by Algorithm 1, where the noise terms ξk satisfy the condition (10). Then
the sequence {xk} converges to x∗ a.s. for an arbitrary initial approximation
x0.

The convergence of Algorithm 1 with dk = −Gk, is a direct consequence
of SA convergence theorem, Theorem 2.1 for stochastic step sizes ak, and the
property of the gain sequence {ak} given with Theorem 3.1.

Corollary 3.1 Assume that A1-A3 hold. Let {xk} be a sequence generated
by Algorithm 1 with dk = −Gk, where the noise terms ξk satisfy the condition
(10). Then the sequence {xk} converges to x∗ a.s. for an arbitrary initial
approximation x0.

4 Numerical Results

In this section, numerical results are presented. A gradient version of Algo-
rithm 1 is compared to SA algorithm (4) and algorithms with adaptive steps
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from [6] and [7]. A descent direction form of Algorithm 1 is compared to SA
algorithm with descent direction (8).

Testing is performed on the 18 test problems selected from [22] and [23].
All problems have the form of nonlinear least squares

f(x) =
r∑

i=1

f 2
i (x).

The list of problems, their dimensions n and the initial approximations x0

are given in Table 1. The problems are transformed into noisy problems by
adding a normal distributed noise of the form

ξ ∼ N (0, σ2) and ε ∼ N (0, σ2In×n), (48)

to the function and gradient evaluations respectively, where σ > 0 is the
noise level and In×n is the identity matrix. Three different values for σ are
tested, σ = 0.01, 0.4, 1.

The noisy functional and gradient values are calculated using the arith-
metic mean with sample size p. i.e.

Fk =
1

p

p∑
i=1

F (xk, ξ
i
k), Gk =

1

p

p∑
i=1

∇F (xk, ε
i
k),

where {ξi
k} and {εi

k} are i.i.d. samples and p is some small positive integer.
All tests are performed with sample size p = 3.

The values of the parameters a, A and α used in step sizes (5) and (9)
are shown in Table 2. Some of them are taken form [6] and [14], while the
others are derived as the most suitable choice for the underlying problem.

The descent direction forms of Algorithm 1 and SA algorithm (8) are
tested using a quasi-Newton direction. In particular, we use BFGS direction
dk = −B−1

k Gk, with the update formula

Bk+1 = Bk − Bkδkδ
T
k Bk

δT
k Bkδk

+
∆k∆

T
k

∆kδk

, (49)

where

δk = xk+1 − xk and ∆k = G(xk+1, εk)−G(xk, εk),

i.e. the gradient difference ∆k is calculated using the same sample set. This
is already successfully tested in [11, 17, 18, 24].
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Table 1: Test problems.

No Problem n x0

1 The Gaussian function 3 (4/10, 1, 0)
2 The Box 3-dimensional function 3 (0, 10, 5)
3 The variably dimensioned function 4 (3/4, 2/4, 1/4, 0)
4 The Watson function 4 (0, 0, 0, 0)
5 The Penalty Function 1 10 (1, 1, . . . , 1)
6 The Penalty Function 2 4 (1/2, 1/2, 1/2, 1/2)
7 The Trigonometric Function 10 (1/10, 1/10, . . . , 1/10)
8 The Beale Function 2 (1, 1)
9 The Chebyquad Function 10 (5/11, 10/11 . . . , 50/11)
10 The Gregory and Karney Tridiagonal Matrix Function 4 (0, 0, 0, 0)
11 The Hilbert Matrix Function 4 (1, 1, 1, 1)
12 The De Jong Function 1 3 (−5.12, 0, 5.12)
13 The Branin RCOS Function 2 (−1, 1)
14 The Colville Polynomial 4 (1/2, 1,−1/2,−1)
15 The Powell 3D Function 3 (0, 1, 2)
16 The Himmelblau function 2 (−1.3, 2.7)
17 Strictly Convex 1 10 (1/10, 2/10, . . . , 1)
18 Strictly Convex 2 10 (1, 1, . . . , 1)

Each test consists of N = 50 independent runs starting from the same
initial point. Algorithms stop if ||Gk|| ≤ c, where c = min{√nσ, 1}, or
when the maximal number of 200n function evaluations are reached, with
each gradient evaluation counted as n function evaluations. That is, the
algorithms stop if either a stationary point in a stochastic sense is reached
or the maximal number of function evaluations is used. Like in [11], runs
are classified into three categories successful (convergent), partially successful
runs and unsuccessful (divergent) runs. A run is considered successful if a
method stops due to ||Gk|| ≤ c. The number of successful runs is denoted by
Nconv. If ||Gk|| > 200

√
n, run is unsuccessful, i.e. divergence is declared.

The number of divergent runs is denoted by Ndiv. Finally, the runs that stop
due to exhausting the maximal number of allowed function evaluations are
considered partially successful and their number is denoted by Npar.
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Table 2: The initialization of the parameters.

Problem a A α

1 1 1 0.75
2 1 100 0.501
3 0.1 1 0.75
4 0.1 1 0.75
4 0.1 1 0.75
5 0.1 1 0.75
6 0.1 100 0.501
7 1 100 0.501
8 1 100 0.501
9 0.1 100 0.75
10 0.5 1 0.501
11 0.5 1 0.501
12 0.1 100 0.75
13 0.5 1 0.501
14 1 100 0.501
15 0.1 100 0.75
16 0.5 1 0.501
17 0.5 100 0.501
18 0.1 100 0.75

We explore the performance and sensitivity of Algorithm 1 to the para-
meters θ, m and σ̂ used in the step size scheme (9). We report results for
larger values of the parameter θ, that are θ = 0.75 and θ = 0.99, since our
initial hypothesis was that a larger θ would improve performance of the algo-
rithm allowing bigger steps when a ”sufficient” decrease in functional value
is observed. Next, we consider five different values for m = 3, 5, 10, 15, 20.
For the parameter σ̂ in the step size scheme (9) we use the noise level σ given
by (48), which, as we explained earlier, is closely related to the variance of
the sampling distribution of the estimator Fk of the optimal value f ∗.

Consecutive zero steps that can occur during the implementation of Algo-
rithm 1 may lead to no progress of the algorithm. As an additional implemen-
tation issue, based on Remark 3.1, we constrain the number of consecutive
zero steps. The following correction is applied. If the number of consecutive
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zero steps is greater than some predetermined number mcorr, in the next
iteration we use ak = a

(tk+1+A)α as a step size. Empirically, we decided it is
best to use mcorr = m + 1 as a correction value.
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Figure 1: Algorithm 1: Percentage of successful, partially successful and
divergent runs, σ = 0.01
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Figure 2: Algorithm 1: Percentage of successful, partially successful and
divergent runs, σ = 0.4

Overviews of successful, partially successful and unsuccessful runs of the
Algorithm 1 for the noise levels σ = 0.01, σ = 0.4 and σ = 1 are given in
Figure 1, Figure 2, and Figure 3 respectively. All three figures display results
of testing Algorithm 1 with the negative gradient direction (MSGD) and with
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Figure 3: Algorithm 1: Percentage of successful, partially successful and
divergent runs, σ = 1

the BFGS direction (MSDD) for θ = 0.75, 0.99 and m = 3, 5, 10, 15, 20. The
results show that the performance of Algorithm 1 is sensitive to the choice
of all three parameters θ, m and σ̂, as well as being sensitive to the chosen
direction. In almost all cases, regardless of the chosen direction, the noise
level σ and parameter m, results show that higher values of θ lead to a
smaller number of divergent runs and higher number of convergent runs.
This is in conformance with our discussion that larger steps can improve
the performance of the algorithm when a ”sufficient” decrease in current
functional value is observed. Similarly, in almost all cases higher m leads
to smaller number of divergent runs and higher number of convergent runs.
However, due to the fact that average value is sensitive to extreme values we
do not recommend taking too large values for m. The most suitable value,
derived empirically, is m = 10. It was expected that the lower noise level
should give better performance, but that did not happen (see Figure 1 for
θ = 0.99 and Figure 2 for θ = 0.99), probably due to the very small interval
for σ = 0.01 in the adaptive step size scheme (9) that accepts safe steps of
the form (5). This is verified by additional testing which allowed noise level
σ and parameter σ̂ to differ. Three different parameters σ̂ = 0.1, 0.3, 0.6
are tested for all three noise levels σ = 0.01, 0.4, 1. The numerical results are
available at the web page http://irenastojkovska.weebly.com/uploads/
5/8/2/0/58202701/adaptivesa add2.pdf.

Finally, we compare Algorithm 1 which uses the negative gradient direc-
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tion and the BFGS direction with other relevant adaptive algorithms. We
present results for the following 6 algorithms:

• SAGD - Algorithm (4) with SA step sizes (5)

• MSGD - Algorithm 1 with dk = −Gk, θ = 0.99 and m = 10

• XDGD - adaptive step size algorithm from [7]

• KGD - adaptive step size algorithm from [6]

• SADD - Algorithm (8) with BFGS direction and SA step sizes (5)

• MSDD - Algorithm 1 with BFGS direction, θ = 0.99 and m = 10

Note that the first 4 algorithms use negative gradient directions. In Fig-
ure 4 and Figure 5 we report the percentages of successful, partially successful
and unsuccessful runs, together with the performance profiles for noise levels
σ = 0.4 and σ = 1 respectively. As a performance measure we use the num-
ber of function evaluations needed in successful and partially successful runs
i.e.

πij =
1

|Nconij

⋃
Nparij|

∑

r∈Nconij
S

Nparij

fcalcr
ij

nj

,

where Nconij is the number of successful runs for ith Algorithm to solve
problem j, Nparij is the number of partially successful runs for ith Algorithm
to solve problem j, fcalcr

ij is the number of function evaluations needed for
ith Algorithm to solve problem j in rth run and nj is the dimension of
problem j, where i = 1, · · · , 7, j = 1, · · · , 18, r = 1, · · · , 50.

The results demonstrate that Algorithm 1 has smaller number of diver-
gent runs regardless of the chosen direction and noise level. Kesten’s algo-
rithm (KGD) is competitive with the gradient form of Algorithm 1 (MSGD)
in the number of successful runs but fails when it comes to the number
of divergent runs. Our algorithms with BFGS direction (MSDD) is signifi-
cantly better than the corresponding SA algorithm (8) with BFGS direction
(SADD) for both noise levels. We can conclude that Algorithm 1 is com-
petitive in comparison with the existing algorithms with adaptive step sizes,
while being more successful in decreasing the number of the divergent runs.
Good performance of Algorithm 1 is also confirmed with performance pro-
files.
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Figure 4: Comparison of the algorithms, σ = 0.4
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Figure 5: Comparison of the algorithms σ = 1

5 Conclusions

In this paper we have proposed a new adaptive step size scheme for the
stochastic approximation (SA) algorithms based on the tracking previously
noisy function values. According to the proposed scheme, the larger step size
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in the next iterate is adopted if a ”sufficient” decrease in the current func-
tional value is observed. Under a non restrictive assumption of independent
identically distributed continuous random noise with a positive pdf, the gen-
erated step size sequence has the desired SA step size property that ensures
the almost sure convergence of SA methods for both gradient and descent
direction. Numerical results verify better performance of the proposed SA
algorithm with adaptive step sizes compared to the existing algorithms with
adaptive step sizes.

In the future, we might focus our attention on analyzing the convergence
of the proposed methods when θ = 1. It will be challenging to analyze
convergence in a more general case of state dependent noise and with no
restrictions to its pdf, since we obtained good numerical results in those cases
too. Finally, it will also be interesting to introduce variability in constants
m and σ̂ used in the adaptive step size scheme (9).

References

[1] Robbins, H., Monro. S.: A stochastic approximation method, Ann.
Math. Stat. 22, 400-407 (1951)

[2] Chen, H. F.: Stochastic Approximation and Its Application, Kluwer
Academic Publishers, New York, (2002)

[3] Spall, J. C.: Introduction to stochastic search and optimization: estima-
tion, simulation, and control, John Wiley & Sons, Inc., Hoboken, New
Jersey, (2003)

[4] Spall, J. C.: Adaptive stochastic approximation by the simultaneous
perturbarion method, IEEE AC 45(10), 1839-1853 (2000)

[5] Kesten, H.: Accelerated stochastic approximation, Ann. Math. Stat. 29,
41-59 (1958)

[6] Delyon, B., Juditsky, A.: Accelerated stochastic approximation, SIAM
J Optimiz. 3(4) 868-881 (1993)

[7] Xu, Z., Dai, Y. H.: New stochastic approximation algorithms with adap-
tive step sizes, Optim. Lett. 6(8), 1831-1846 (2012) .

25



[8] Yousefian, F., Nedic, A., Shanbhag, U. V.: On Stochastic Gradient and
Subgradient Methods with Adaptive Steplength Sequences, Automatica
48(1), 56-67 (2012)

[9] Krejic, N., Luzanin, Z., Stojkovska, I.: A gradient method for uncon-
strained optimization in noisy environment, Appl. Numer. Math 70, 1-21
(2013)

[10] Bertsekas, D. P., Tsitsiklis, J. N.: Gradient convergence in gradient
methods with errors, SIAM J Optimiz. 10(3), 627-642 (2000)

[11] Krejic, N., Luzanin, Z., Ovcin Z., Stojkovska, I.: Descent direc-
tion method with line search for unconstrained optimization in noisy
environment, Optim Methods Softw 30(6), 1164-1184 (2015), DOI:
10.1080/10556788.2015.1025403

[12] Xu, Z.: A combined direction stochastic approximation algorithm, Op-
tim. Lett. 4(1), 117-129 (2010)

[13] Xu, Z., Xu, X.: A new hybrid stochastic approximation algorithm, Op-
tim. Lett. 7(3), 593-606 (2013)

[14] Xu, Z., Dai, Y. H.: A stochastic approximation frame algorithm with
adaptive directions, Numer. Math. Theor. Meth. Appl. 1(4), 460-474
(2008)

[15] Byrd, R. H., Chin, G. M., Neveitt, W., Nocedal, J.: On the use of sto-
chastic Hessian information in optimization methods for machine learn-
ing, SIAM J Optimiz. 21(3), 977-995 (2011)

[16] Byrd, R. H., Chin, G. M., Nocedal, J., Wu, Y.: Sample size selection
in optimization methods for machine learning, Math. Program. 134(1),
127-155 (2012)

[17] Byrd, R. H., Hansen, S. L., Nocedal, J., Singer, Y.: A Stochastic Quasi-
Newton Method for Large-Scale Optimization, SIAM J. Optim., 26(2),
10081031 (2016)

[18] Wang, X., Ma, S., Liu, W.: Stochastic quasi-Newton methods for non-
convex stochastic optimization, arXiv:1412.1196 [math.OC], (2014)

26



[19] Knight, K.: Mathematical statistics, Chapman & Hall/CRC, Boca Ra-
ton, Florida (2000)

[20] Durrett, R.: Probability: Theory and Examples, Second edition,
Duxbury Press, Belmont, CA (1995)

[21] Powell, W. B.: Approximate Dynamic Programming: Solving the Curses
of Dimensionality, Chapter 6. Stochastic Approximation Methods, John
Wiley & Sons, Inc., Hoboken, New Jersey (2007)
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