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Abstract

The complex-step derivative approximation is a powerful method
for derivative approximations which has been successfully implemented
in deterministic numerical algorithms. We explore and analyze its im-
plementation in noisy environment through examples, error analysis
and application to optimization methods. Numerical results show a
promising performance of the complex-step gradient approximation in
noisy environment.
Key words. derivative approximation, complex-step derivative ap-
proximation, nonmonotone line-search methods, noisy environment.
AMS subject classification. 65D25, 30E10, 90C56

1 Introduction

Approximations of derivatives of functions are widely used in many areas such
as chemical, biomedical and mechanical engineering, physics and finance, in
solving differential equations or optimization. It might happen that there
exists an underlying function which should be differentiated, but only its
values at a sampled data set are known, without knowing the function itself;
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or the exact formulas of derivatives are available, but the exact computation
of the derivatives might require a lot of function evaluations. So, in those
and all similar cases, approximations of derivatives are recommended.

The most basic methods for approximating the first derivative of a func-
tion are the various finite difference methods. Let f : R→ R be a real-valued
function. Depending on the required precision and computational cost, the
most used finite difference approximations of the first derivative of f at a
point x are the forward and the centered finite difference approximation given
by:

f ′(x) ≈ f(x + h)− f(x)

h
(1)

and

f ′(x) ≈ f(x + h)− f(x− h)

2h
(2)

respectively, where h is a small positive real step. It can be easily verified,
by using the Taylor series expansion, that the order of the approximation
error of the forward finite difference approximation (1) is O(h), while the
order of the approximation error of centered finite difference approximation
(2) is O(h2), [1]. Here O(·) is the order notation defined for any nonnegative
sequences of scalars {ak} and {bk}, for which we write ak = O(bk), if there
is a constant C > 0 such that |ak| ≤ C|bk|, for all k sufficiently large, [21].

From the perspective of computational cost, the forward finite difference
requires one additional function evaluation to make the approximation (as-
suming that the value of f(x) is already available), while the centered finite
difference requires two additional function evaluations to make the same ap-
proximation. While using the finite difference, the ”step-size dilemma” is
also present, that is using a small step size to minimize the truncation er-
ror versus avoiding to use very small values that will lead to the subtractive
cancellation error, [17].

Another approach to derivative approximation uses complex variables,
and was firstly proposed by Lyness and Moler in [10]. It was later used by
Squire and Trap in [23] for obtaining a very simple expression for estimating
the first derivative. This procedure uses an imaginary step to approximate
the first derivative and avoids subtractive error cancellation. The complex-
step derivative approximation in [23] is obtained as follows.

Let f be an analytic function of a complex variable z, and also assume
that f is real on the real axis. Then f has Taylor series expansion about
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x ∈ R given by:

f(x + ih) = f(x) + ihf ′(x)− h2f ′′(x)

2!
− ih3f ′′′(x)

3!
+ . . . ,

where h is a small positive real step and i is the imaginary unit (i2 = −1).
Taking imaginary parts on both sides, we obtain:

Im
(
f(x + ih)

)
= hf ′(x)− h3f ′′′(x)

3!
+ . . . , (3)

from where we can finally write:

f ′(x) =
Im

(
f(x + ih)

)

h
+ h2f ′′′(x)

3!
+ . . . =

Im
(
f(x + ih)

)

h
+O(h2).

Thus, the first derivative of f at x can be approximated by the following
expression:

f ′(x) ≈ Im
(
f(x + ih)

)

h
(4)

with error of order O(h2). The error of this approximation is of same order as
the error of the central finite difference approximation (2), but in the approx-
imation given by (4) there is no possibility of subtractive cancellation error.
The step h can be chosen arbitrary small, the approximation is robust and
achieves great accuracy for any h below 10−8, although in double precision
values below 10−308 results in underflow, [17].

Very often when physical system measurements or computer simulations
are used for approximations, a noise is present. The noise can also arise
from some uncertainty in the system under consideration. In that case, it is
common to note that in the absence of the true (noiseless) functional values
f(x), we are forced to use noisy measurements defined by

F (x) = f(x) + ξ(x), (5)

where ξ(x) is a general state-dependent deterministic or stochastic noise.
See, for example, [12, 13, 14, 22].

If we have to approximate the first derivative of the function f at a
point x using the finite difference approximation in noisy environment, the
approximation will be

f ′(x) ≈ F (x + h)− F (x)

h
(6)
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and

f ′(x) ≈ F (x + h)− F (x− h)

2h
, (7)

for the forward and the centered finite difference approximation in presence
of noise, respectively, where F (x) is defined by (5) and h is a positive real
step, see [19].

Similarly, noise can occur when complex-valued functions are used for
calculations. In that case, we have a complex noise ζ(z) = ξ1(z) + iξ2(z),
where ξ1(z) and ξ2(z) are real valued deterministic or stochastic functions.
So, instead of a true function value f(z), we will use a noisy functional value
defined by

F (z) = f(z) + ζ(z) = f(z) + ξ1(z) + iξ2(z). (8)

Complex-valued functions and various types of complex noise can be found
in certain problems in statistics, signal processing, digital communications
and electrical engineering, see for example [3, 8].

In this work we define, explore and analyze the complex-step derivative
approximation in presence of noise and implement it to the nonmonotone
line-search optimization algorithms.

Our paper is organized as follows. In Section 2, some known results for
finite difference approximations in absence and presence of noise are given.
The complex-step derivative approximation in presence of noise is defined
and explored in Section 3. Section 4 contains the results of numerical ex-
periments with the new complex-step gradient approximation in noisy envi-
ronment used in the nonmonotone line-search optimization algorithms, while
the conclusions and the final remarks are given in Section 5.

2 Preliminaries: Finite difference approxima-

tions

Let f : Rn → R be a real valued function of vector argument. Finite differ-
ence approximations (1) and (2) can be modified to approximate the gradient
∇f of the function f at a point x:

[∇f(x)
]
j
≈ f(x + hej)− f(x)

h
, j = 1, 2, ..., n (9)

and [∇f(x)
]
j
≈ f(x + hej)− f(x− hej)

2h
, j = 1, 2, ..., n (10)
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respectively, where h is a small positive real step and ej is the j-th coordinate
vector, [21].

Note that, the overall computational cost for approximating the gradient
using the forward finite difference approximation is n + 1, while using the
centered difference approximation is 2n. This noticeable increase in function
evaluations results in decrease of error. Namely, the forward finite differ-
ence approximation error is of first-order i.e. O(h), while the centered finite
difference approximation error is of second-order i.e. O(h2), [21]. The cen-
tered finite difference approximation, if implemented carefully, has satisfac-
tory performance, however given the nature of the calculations required, finite
difference approximations are susceptible to subtractive cancellation errors
in the numerator. For very small steps h, the subtraction in the numera-
tor gives zero which results with an incorrect approximation to the gradient
components. So, a value of h =

√
mach. eps ≈ 10−8 is recommended, [21].

When noise is present, and true functional values f(x) are not known,
but only their noisy measurements F (x) given by (5), forward and centered
finite difference gradient approximations in noisy environment are given by

[ĝFFD(x)]j =
F (x + hej)− F (x)

h
, j = 1, 2, ..., n (11)

and

[ĝCFD(x)]j =
F (x + hej)− F (x− hej)

2h
, j = 1, 2, ..., n (12)

respectively, where h is a positive real step and ej is the j-th coordinate
vector, [13, 14].

The choice of h is crucial for the accuracy of the approximation with finite
difference in presence of noise. It has to be related to the noise level, see [19]
for the approximation of the first derivative with forward finite difference and
see [14] for the approximation of the gradient with centered finite difference.
Actually, it has been empirically established that the value h = 3σ, where σ
is the noise level (standard deviation of the simulated noise), suits the best
when gradient is approximated with centered finite difference and it is used
in derivative-free nonmonotone line-search optimization methods, [14]. The
importance of h not being small in noisy gradient approximations used in
line-search optimization methods is also pointed out in [9], where it is hinted
that small steps h can lead to failure of the line-search procedure.

Finite difference gradient approximations have been theoretically ana-
lyzed and successfully implemented in various optimization frameworks, both
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in absence of noise (e.g. [5, 20]), or when noise is present (e.g. [9, 13, 14, 19]).

3 Complex-step approximations

In this section we extend the complex-step approximation of the first deriv-
ative of f established in [23] and given by formula (4), to complex-step ap-
proximation of the first derivative of f in presence of noise. When noise is
present, instead of true function values f(z), we use the noisy function mea-
surements F (z), defined by (8). So, we define the complex-step first derivative
approximation in presence of noise of an analytic function f at x ∈ R by:

f ′(x) ≈ Im
(
F (x + ih)

)

h
, (13)

where h is a positive real step.
In [23], a comparison has been made between two approximation formulas

for the first derivative: the centered finite difference approximation (2) and
the complex-step derivative approximation (4), in absence of noise. Results
show that the approximation (4) does not suffer from the subtractive cance-
lation error as h decreases, which is not the case with the approximation (2).
We want to find out how the complex-step approximation acts in presence
of noise. On the next two examples, the same ones used in [23], we are going
to explore the sensitivity of the complex-step gradient approximation (13)
on the step h and compare it to the centered finite difference approximation
(7), in noisy environment.

Example 3.1 ([23]) Let f(x) = x9/2, then the true value of the first deriv-
ative of f at x0 = 1.5 is f ′(1.5) ≈ 18.60081.

Example 3.2 ([11]) Let f(x) = ex/(sin3 x + cos3 x), then the true value of
the first derivative of f at x0 = 1.5 is f ′(1.5) ≈ 3.62203.

For the purpose of obtaining noisy function evaluations F (x), used in the
centered finite difference approximation (7), simulated white Gaussian noise
ξ ∼ N (0, σ2) is used, and the noisy values F (x) are obtained as F (x) =
f(x) · (1 + ξ). For noisy function evaluations F (z), used in the complex-step
approximation (13), simulated white circular noise of the form ζ = ξ1 + i · ξ2,
where ξ1 and ξ2 are independent random variables with ξ1, ξ2 ∼ N (0, σ2

2
), is
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used. The noisy values F (z) are obtained as F (z) = f(z)·(1+ξ1+i·ξ2). Both
noises ξ and ζ are comparable in a sense that the both have zero expectation,
they are normally distributed on real parts and both have the noise level equal
to σ. Testing has been performed at three noise levels σ = 0.01, 0.1, 0.5 and
different values for the step h.

Each derivative has been evaluated 100 times for each tested value of
the step h and 95% confidence intervals for the values of the derivative are
presented on Figures 1-3 for the noise levels σ = 0.01, 0.1, 0.5 respectively.

(a) Example 3.1. (b) Example 3.2.

Figure 1: 95% confidence intervals for the first derivative approximated by
the centered finite difference (CFD) approximation (7) and by the complex-
step (CS) approximation (13), at noise level σ = 0.01.

As it can be seen from the plots at Figures 1-3, derivative approximations
with small values for the step h have bigger confidence intervals regardless
the noise level. The approximations with higher values for the step h may
have smaller confidence intervals, but are less accurate. It seems that for
small values of the step h, complex-step approximations are more accurate
than centered finite difference approximations when the noise level is low,
but with the increase of the noise level the opposite happens. For bigger
values of the step h we have different situation, both approximations have
similar accuracy, but the complex-step approximation has smaller confidence
intervals.

In Section 2, it was mentioned that the choice of h is crucial for the
accuracy of the approximation with the finite difference formula in presence of
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(a) Example 3.1. (b) Example 3.2.

Figure 2: 95% confidence intervals for the first derivative approximated by
the centered finite difference (CFD) approximation (7) and by the complex-
step (CS) approximation (13), at noise level σ = 0.1.

(a) Example 3.1. (b) Example 3.2.

Figure 3: 95% confidence intervals for the first derivative approximated by
the centered finite difference (CFD) approximation (7) and by the complex-
step (CS) approximation (13), at noise level σ = 0.5.

noise and that h has to be related to the noise level, [19]. Similar conclusions
can be made for the choice of h when the first derivative is approximated
by the complex-step derivative approximation formula in presence of noise
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(13). For that purpose we define the least squares error of the complex-step
approximation by

SE(h) =

(
1

h
Im(F (x + ih))− f ′(x)

)2

, (14)

and we seek a step h > 0 that minimizes the expected value E[SE(h)], the
same approach as in [19] for finite difference approximations in presence of
noise.

We also assume that the noise ξ(x) defined by (5) is a random variable
with expectation E[ξ(x)] = 0 and variance Var[ξ(x)] = σ2, and that the real
and the imaginary part of the complex noise ζ(z) defined by (8) i.e. ξ1(z)
and ξ2(z) respectively, are independent and identically distributed random
variables with E[ξ1(z)] = E[ξ2(z)] = 0 and Var[ξ1(z)] = Var[ξ2(z)] = σ2/2.
So, both noises ξ(x) and ζ(z) have the same noise level σ > 0.

The approximation problem is formulated in terms of the derivative of the
expected value E[F (x)], since the assumptions about the noise imply that the
derivatives of f(x) and E[F (x)] agree. Choosing a step h that minimizes the
expected value E[SE(h)] yields an optimal approximation to the derivative
of the expected value E[F (x)], hence it yields an optimal approximation to
the first derivative of f(x), [19]. As we will see, the numerical results of
complex-step approximations also show a good performance of the step h
that is chosen in this way.

Before analyzing errors of complex-step derivative approximation in pres-
ence of noise, let us rewrite the expansion (3) as

Im
(
f(x + ih)

)
= hf ′(x)− h3f ′′′(u)

3!
, (15)

for some u ∈ (x, x+h). Then, using (8) and (15), we can derive the following
expression for the difference between the complex-step approximation and the
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true value of the first derivative, in presence of noise:

1

h
Im(F (x + ih))− f ′(x)

=
1

h
Im

(
f(x + ih) + ξ1(x + ih) + iξ2(x + ih)

)
− f ′(x)

=
1

h
Im

(
f(x + ih)

)
+

1

h
ξ2(x + ih)− f ′(x)

=
1

h

(
hf ′(x)− h3

6
f ′′′(u)

)
+

1

h
ξ2(x + ih)− f ′(x)

= f ′(x)− h2

6
f ′′′(u) +

1

h
ξ2(x + ih)− f ′(x)

= −h2

6
f ′′′(u) +

1

h
ξ2(x + ih), (16)

fore some u ∈ (x, x + h). We will need the last equation (16) for analyzing
the errors of complex-step derivative approximation in presence of noise. The
following lemma gives bounds of the expected value E[SE(h)].

Lemma 3.1 Assume that f : R→ R is an analytic function, and m and M
are minimum and maximum of |f ′′′| on (x, x + h), respectively. Then,

σ2

2h2
+

h4

36
m2 ≤ E[SE(h)] ≤ σ2

2h2
+

h4

36
M2. (17)

Proof. Using (16) and the assumptions about the noise we have

E[SE(h)] = E

[
1

h
Im(F (x + ih))− f ′(x)

]2

= E

[
−h2

6
f ′′′(u) +

1

h
ξ2(x + ih)

]2

= Var

[
1

h
ξ2(x + ih)

]
+

(
−h2

6
f ′′′(u)

)2

=
1

h2
Var [ξ2(x + ih)] +

h4

36
(f ′′′(u))

2

=
σ2

2h2
+

h4

36
(f ′′′(u))

2
, (18)
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since for a random variable X such that E[X] = 0 we have E[X + α]2 =
Var[X]+α2. Then, directly from (18), for m and M , minimum and maximum
of |f ′′′| on (x, x + h), respectively, we get the bounds (17).

Let us note that the resulting bounds on E[SE(h)] in Lemma 3.1 coincide
with the bounds on the expected least squares error of the centered difference
approximation in presence of noise (see Lemma 4.1 in [19]), under the as-
sumptions about the real and the complex noises made in this Section, with
same noise level σ > 0. So, a similar discussion (as in [19]) follows. Namely,
if we denote by φ(h, µ) = σ2

2h2 + h4

36
µ2, then φ is uniformly convex and

min
h

φ(h, µ) =
31/3

4
µ2/3σ4/3.

Then, the global minimizer of φ(h, µ) for µ = M is

hM =
(3σ

M

)1/3

,

which plays an important role in the behavior of E[SE(h)], as the following
theorem shows.

Theorem 3.1 Assume that f : R → R is an analytic function, and m and
M are minimum and maximum of |f ′′′| on (x, x + h), respectively. Then,

31/3

4
m2/3σ4/3 ≤ min

h
E[SE(h)] ≤ 31/3

4
M2/3σ4/3. (19)

Proof. See the proof of Theorem 4.2 in [19].

Theorem 3.1 shows that with a complex-step derivative approximation
in presence of noise we can expect an error of order σ4/3. It can be also
concluded that hM is nearly optimal in the sense that E[SE(hM)] satisfies
the bounds in Theorem 3.1 i.e.

31/3

4
m2/3σ4/3 ≤ E[SE(hM)] ≤ 31/3

4
M2/3σ4/3.

Before discussing the derived theoretical results, in terms of their similar-
ity to the centered finite difference approximation results in [19], we are going
to illustrate the bounds for the expected least squares error for complex-step
approximation, on Example 3.1 and Example 3.2.
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(a) Example 3.1. (b) Example 3.2.

Figure 4: Realized least squares error SE(h) for the complex-step approxima-
tion, along with the expected error, and error for hM , at noise level σ = 0.01.
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(a) Example 3.1. (b) Example 3.2.

Figure 5: Realized least squares error SE(h) for the complex-step approxima-
tion, along with the expected error, and error for hM , at noise level σ = 0.1.

Same as earlier in this Section, we use simulated white circular noise
for noisy function evaluations F (z). Three different noise levels are tested
σ = 0.01, 0.1, 0.5. The log-log plots of the realizations of the least squares
error SE(h) for different values of h, along with the expected least squares
error and the realized least squares error for hM are shown on Figures 4-6.
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Figure 6: Realized least squares error SE(h) for the complex-step approxima-
tion, along with the expected error, and error for hM , at noise level σ = 0.5.

Numerical results shown on Figures 4-6 confirm the theoretical results that
the complex-step approximation with h = hM results with nearly optimal
(minimal) error.

Although the experimental and the theoretical results show almost similar
behavior of both approximations, the centered finite difference approxima-
tion and the complex-step approximation, in presence of noise, there is an ex-
pected advantage of the complex-step approximation over the centered finite
difference approximation when applied to gradient approximations. Namely
it is expected that the noise will have smaller influence on the complex-step
approximation, since there is only one noisy function evaluation per (par-
tial) derivative approximation versus two noisy function evaluations in the
centered finite difference approximation. This also results in lower compu-
tational cost when complex-step approximation is used for approximating
the gradient, which is expected to improve the efficiency of the optimization
algorithms that employ complex-step derivative approximations. At the end
of this Section, we give the complex-step gradient approximations in order
to analyze the gradient approximation errors.

The complex-step approximation of the first derivative of f established
in [23] and given by formula (4), has been extended for complex-step approx-
imation of the gradient of an analytic function f at a point x ∈ Rn, given
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by
[∇f(x)

]
j
≈ Im

(
f(x + ihej)

)

h
, j = 1, 2, ..., n, (20)

where h is a small positive real step and ej is j-th coordinate vector, [16].
Generalizations of the complex-step approximation have also been explored
in [1, 2].

Due to the analysis of the corresponding derivative approximation in the
one dimensional case (4), the gradient approximation (20) allows us to avoid
subtractive cancellation errors when approximating the gradient of f . This
property becomes very important when working in presence of noise, since in
case of subtractive cancellation errors, the noise will have greater influence
on the accuracy of the approximation.

Using the noisy function measurements F (z), defined by (8), we extend
the complex-step gradient approximation (20) and define the complex-step
gradient approximation in presence of noise of an analytic function f at
x ∈ Rn by:

[
ĝCS(x)

]
j
=

Im
(
F (x + ihej)

)

h
, j = 1, 2, ..., n, (21)

where h is a positive real step and ej is the j-th coordinate vector.
Analyzing the absolute error of the complex-step approximation defined

by

AE(h) =

∣∣∣∣
1

h
Im(F (x + ih))− f ′(x)

∣∣∣∣ , (22)

we can derive bounds on the error of the complex-step gradient approxima-
tion in presence of noise and show that the value of h in the complex-step
gradient approximation (21) is related to the noise level, similarly as in [14]
for the centered finite difference gradient approximation in presence of noise.

Assuming that |f ′′′| has an upper bound M > 0, the complex noise ζ is
bounded by D > 0 i.e. |ζ(z)| ≤ D for all z ∈ C, where |ζ(z)| is the modulus
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of ζ, and by using (16), we obtain the following expression:

AE(h) =

∣∣∣∣
1

h
Im(F (x + ih))− f ′(x)

∣∣∣∣

=

∣∣∣∣−
h2

6
f ′′′(u) +

1

h
ξ2(x + ih)

∣∣∣∣

≤ h2

6
|f ′′′(u)|+ 1

h
|ξ2(x + ih)|

≤ M

6
h2 +

D

h
. (23)

Now, using (23), and assuming that the third partial derivatives of f and
the noise ζ are bounded, i.e. assuming that there exist M, D > 0 such that∣∣∣∂3f
∂x3

j
(x)

∣∣∣ ≤ M , j = 1, 2, ..., n for all x = (x1, x2, ..., xn)T ∈ Rn and |ζ(z)| ≤ D

for all z ∈ Cn, where |ζ(z)| is the modulus of the complex noise ζ, we can
obtain an estimate for the approximation error when using the complex-step
gradient approximation (21) i.e.

||ĝCS(x)−∇f(x)|| =
[

n∑
j=1

∣∣∣
[
ĝCS(x)

]
j
− [∇f(x)

]
j

∣∣∣
2
]1/2

≤
[

n∑
j=1

(
M

6
h2 +

D

h

)2
]1/2

=

(
M

6
h2 +

D

h

)√
n, (24)

where ‖ · ‖ is the Euclidean norm in Rn. Note that, the right hand side
in (24) achieves minimum for h = 3

√
3D/M , so small values for h are not

recommended for complex-step gradient approximation in noisy environment.
In the next section, we implement the complex-step gradient approxima-

tion (21) to existing optimization algorithms in presence of noise.
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4 Application to line-search optimization al-

gorithms

Let us consider the unconstrained minimization problem in noisy environ-
ment:

min
x∈Rn

f(x) (25)

where f : Rn → R has continuous partial derivatives and only noisy function
evaluations F (x) defined by (5) are available.

Several approaches have been suggested for solving the problem (25) as-
suming that noisy function evaluations (5) are available. Some of them are:
random search method [22], coordinate search method [12], or nonmonotone
line search methods [13, 14].

Nonmonotone line search methods have several advantages over monotone
methods and have been successfully used in noise free environment, [5, 7, 15,
20, 24]. They have also been implemented in noisy environment, [13, 14].
These methods could accept search directions that are not necessarily descent
directions, which is a frequent occurrence in presence of noise. Further, in
noise free environment, these methods tend to converge to a global solution to
problems with multiple local and global solutions, which is desirable property
in noisy environment since the presence of noise may induce many false local
solutions.

In this Section we are going to compare the performances of nonmonotone
line-search methods presented in [14] which use centered finite difference
gradient approximation (12), to the same methods that use complex-step
gradient approximation, defined here by (21).

Let us briefly go through the nonmonotone line-search methods for solving
the problem (25) that are presented in [14]. Having the current iterate xk,
the next iterate is defined by xk+1 = xk + αkdk, where αk > 0 is a positive
step size, and dk is a search direction. The step size αk is chosen to satisfy
the line-search rule of the form:

F (xk + αkdk) ≤ F k + ηk − α2
kβk. (26)

where F (x) is a noisy functional value defined by (5). The sequences {ηk}
and {βk} are sequences of positive numbers such that:

∞∑

k=0

ηk = η < ∞, (27)
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while βk is bounded and

lim
k∈K

βk = 0 ⇒ lim
k∈K

∇f(xk) = 0 (28)

for some infinite set of indices K ⊆ N. The choice of F k in (26) determines
different line search strategies. These are:

(LS1) F k = F (xk) and ηk ≡ 0 for all k ∈ N, a monotone line search.

(LS2) F k = F (xk).

(LS3) F k = max{F (xk), . . . , F (xmax{k−M+1,0})}, for some M ∈ N.

(LS4) F k+1 = rkQk(F k+ηk)+F (xk+1)

Qk+1
, where Qk+1 = rkQk+1 and rk ∈ [rmin, rmax],

0 ≤ rmin ≤ rmax ≤ 1, F 0 = F (x0) and Q0 = 1.

In our experiments, we use the same values of the parameters in the line-
search procedures as in [14] i.e. for the sequences ηk and βk defined by (27)
and (28), we set

ηk = |F (x0)|/k1.1 and βk ≡ 1,

where x0 is the initial iterate. The initial step length in the non-monotone
line-search procedure (26) is set to α = 1. If the line-search rule (26) is not
satisfied then a smaller step is computed using the safeguard quadratic in-
terpolation, [4]. The maximum number of 1000 line-search trials are allowed,
and if no step is found within these attempts, the algorithm stops declaring
the total number of function evaluations equal to 400n. The rest of the pa-
rameters in the line-search strategies LS3 and LS4 are set to M = 10 and
rk = 0.85.

Nonmonotone line-search methods presented in [14] are derivative-free
methods, which means that they use an approximation of the gradient based
on function values. Let ĝk denote the approximation of the gradient g = ∇f
at xk. We will consider the following search directions dk used in [14]:

(SGR) The spectral gradient search direction, dk = −ĝk/σk, where 0 < σmin <
σk < σmax < ∞ is the spectral coefficient obtained recursively by:

σk+1 = max

{
σmin, min

{
σmax,

(ĝk+1 − ĝk)
T (xk+1 − xk)

‖xk+1 − xk‖2

}}
. (29)
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(BFGS) The BFGS search direction, dk = −Hkĝk, where Hk is the inverse
Hessian approximation and is updated by:

Hk+1 =
(
Ik − ρksky

T
k

)
Hk

(
Ik − ρkyks

T
k

)
+ ρksks

T
k (30)

with sk = xk+1 − xk, yk = ĝk+1 − ĝk and ρk = 1/(yT
k sk).

We use the same values of the parameters used in the above search direc-
tions, as in [14], i.e. σ0 = 1, σmin = 10−10 and σmax = 1010 in SGR direction,
and a rescaling the initial inverse Hessian approximation H0 = I in BFGS
direction into:

H0 ← yT
k sk

yT
k yk

I.

In [14], the centered finite difference formula is used for approximating
the gradient of f at xk i.e.

[ĝCFD
k ]j =

F (xk + hej)− F (xk − hej)

2h
, j = 1, 2, ..., n, (31)

where h is a positive real step and ej is the j-th coordinate vector.
Additionally, assuming that the function f in (25) is an analytic function,

we propose an implementation of the complex-step gradient approximation
to the gradient of f at xk, defined by

[
ĝCS

k

]
j
=

Im
(
F (xk + ihej)

)

h
, j = 1, 2, ..., n, (32)

where h is a positive real step and ej is the j-th coordinate vector. Let us
note that if the function f is not an analytic function, one possible way to im-
plement the complex-step approximation in practice, is first to approximate
the function f by an analytic function (such as polynomial approximation),
then to implement the complex-step approximation to the gradient of that
analytic function. The same approach can also be taken if only real discrete
values of f are known.

We have compared the performance of the complex-step gradient approx-
imation (32) to the centered finite difference gradient approximation (31) im-
plemented in the above described eight nonmonotone line-search algorithms
(four line-search rules for each of two search directions). They have been
tested on the set of 18 standard test problems from [18]. All test problems
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are least squares problems of the form f(x) =
∑m

j=1 f 2
j (x) and are listed in

Table 1 in [14].
For the purpose of obtaining noisy function evaluations F (x) and F (z),

used in (31) and (32), we use simulated white Gaussian noise ξ and white
circular noise ζ = ξ1 + i · ξ2, the both with a noise level σ > 0, as it is
described in Section 3. Testing has been performed at three noise levels
σ = 0.01, 0.1, 0.5.

As mentioned before, after evaluation of the approximation error, it was
empirically established that the value h = 3σ, where σ is the noise level of the
noise ξ, best suits the approximation with centered finite differences (31), see
[14]. Here we have also empirically established that the same value h = 3σ,
where σ is the noise level of the complex noise ζ, best suits the complex-step
approximation (32).

The comparison of the gradient approximations (31) and (32) for im-
plementation in nonmonotone line-search algorithms described above is pre-
sented through performance profiles defined in [6]. For that purpose, 50
independent test-runs have been performed for each of 18 problems, for each
of eight algorithms and two gradient approximations. Each run stops if the
maximum of 400n function evaluations have been reached, where n is the
dimensionality of the problem, or when the objective function has been re-
duced “sufficiently” i.e |F (xk)| < (1 + 2σ) · |F (x0)| · 10−3, where x0 and xk

are the initial and the current iterates respectively. If a test-run stopped
according to either of these criteria, we consider that run to be successful.
Otherwise we count it as unsuccessful run, [14].

As it is defined in [6], performance profile is a performance measurement
and comparison tool for optimization algorithms that uses a cumulative dis-
tribution function as a performance metric. Let P be the set of problems we
are testing on, and let S be the set of solvers we use to solve the problems
in P. Let size{P} = np. For each pair of a problem p ∈ P and solver s ∈ S,
we define ϕp,s as the median number of function evaluations per dimension
needed for solver s to solve problem p, and Mp,s as the mean absolute devi-
ation from the median that corresponds to ϕp,s. These are then combined in
the performance measure:

πp,s = ϕp,s +Mp,s. (33)

We have chosen the median as a representative measure since the distribution
of the number of function evaluations in the successful runs was highly non-
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symmetric. As a baseline for comparison we use the performance ratio:

rp,s =
πp,s

min{πp,s | s ∈ S}
which measures how well a solver s performs on problem p compared to
the performance of the best solver for that problem. Finally, we define the
cumulative distribution function ρs for the performance ratio of solver s as a
measure of the overall performance of the solver with:

ρs(τ) =
1

np

size {p ∈ P | rp,s ≤ τ} .

The function ρs(τ) gives the probability for a solver s ∈ S that a performance
ratio rs,p is within a factor of τ ∈ R of the best possible ratio. The results
are summarized on Figures 7- 9.

As it can be seen from the performance profiles in Figures 7- 9, the
complex-step (CS) approximation has better performance and is more robust
compared to the centered finite difference (CFD) approximation when the
search direction is the spectral gradient (SGR), regardless the noise level and
the line-search strategy. An exception is the monotone line-search LS1 at the
noise level σ = 0.1, for which the CFD approximation results in an algorithm
which is more robust at the end compared to CS approximation. When the
search direction is BFGS, we have a different situation. For smaller noise
levels σ = 0.01 and σ = 0.1, the CS approximation outperforms the CFD
approximation, regardless the the line-search strategy, but at the greater
noise level σ = 0.5, CFD approximation gives better performance profiles at
the beginning for each line-search strategy, that end with the same robustness
as the performance profiles obtained with CS approximation.

5 Conclusion

In this paper we explored and analyzed the complex-step derivative approx-
imation in noisy environment. Different noise levels have been tested and
results have been compared to the centered finite difference approximations.
An analysis of the complex-step derivative approximation errors has been
conducted. The complex-step gradient approximation is applied to the non-
monotone line-search optimization algorithms. In the future, it would be
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Figure 7: Performance profiles of the optimization algorithms that use cen-
tered finite difference (CFD) gradient approximation versus complex-step
(CS) gradient approximation, at noise level σ = 0.01
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Figure 8: Performance profiles of the optimization algorithms that use cen-
tered finite difference (CFD) gradient approximation versus complex-step
(CS) gradient approximation, at noise level σ = 0.1
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Figure 9: Performance profiles of the optimization algorithms that use cen-
tered finite difference (CFD) gradient approximation versus complex-step
(CS) gradient approximation, at noise level σ = 0.5
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interesting to test different extensions of the complex-step derivative approx-
imations that might be more suitable for implementation in noisy environ-
ment.
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