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Abstract

In a note published in Omega [Zhang RQ. A note on the deterministic
EPQ with partial backordering. Omega 2009;37(5):1036-8], the amended
decision procedure for the Pentico et al.’s EPQ with partial backordering
(EPQ-PBO) is proposed, by developing another critical value of the back-
ordering rate. However, there is a case when a decision made with this
amended procedure is not optimal, which will be shown in this paper. A
new decision procedure will be proposed based on the derived necessary
and sufficient conditions for considering the policy of losing all sales or the
policy to meet all demand as possible optimal decisions. The proposed
decision procedure is adapted for one of the extensions of the EPQ-PBO.
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1 Introduction

One of the widely used models for inventory control, the classic square root eco-
nomic order quantity (EOQ) model, during the past years has been the basis
for many other models. When the assumption of instantaneous replenishment
is replaced with the assumption that the replenishment order is received at a
constant finite rate over time, EOQ is extended to the economic production
quantity (EPQ) model. Pentico et al. [1] relaxed one more assumption, they
allowed stockouts with partial backordering in their model, and proposed EPQ
with partial backordering (EPQ-PBO). Recently, a few extensions and supple-
ments to Pentico et al.’s EPQ-PBO have been published; some of them are
Pentico et al. [2], Toews et al. [3], Wee and Wang [4].

Pentico et al. [1] determine the optimal inventory policy from the three
cases: to lose all sales, to meet all demand, and to meet fractional demand, in a
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way that they developed the critical value β∗ of the backordering rate β , below
which the optimal policy is either to meet all demand or to lose all sales, and
above which the optimal policy is to allow stockouts with partial backordering
and meet fractional demand. Using the same notation from Pentico et al. [1],
the critical value β∗ is

β∗ = 1−
√

2C0C ′h
DC2

1

. (1)

Showing that in a case when β > β∗ the policy of meeting fractional demand
with partial backordering is not always the optimal choice, Zhang [5] amended
Pentico et al.’s decision procedure [1] by developing another critical value β∗∗

of the backordering rate β given by

β∗∗ =
PCb(2C0C

′
h −DC2

1 )
PDC ′hC2

1 + DCb(2C0C ′h −DC2
1 )

. (2)

Zhang [5] then proposed the amended decision procedure for EPQ-PBO, which
we will refer to as Zhang’s procedure, and it is as follows.

1. Determine β∗ and β∗∗ from (1) and (2) respectively.

2. If β ≤ max(β∗, β∗∗), compare the cost of meeting all demand (from the
basic EPQ) with the cost of losing all sales. The optimal policy is the one
with a lower cost.

3. If β > max(β∗, β∗∗), the optimal policy is to meet fractional demand with
partial backordering (defined by Pentico et al. [1]).

According to Zhang’s procedure, when β ≤ max(β∗, β∗∗), meeting a frac-
tional demand with partial backordering can not be an optimal decision. How-
ever, we will show that this is not always true. We will derive necessary and
sufficient conditions for considering the policy of losing all sales or the policy
to meet all demand as possible optimal decisions. A new decision procedure
will be proposed based on these conditions. Our new procedure will be without
comparison of costs.

One of the extensions of Pentico et al.’s EPQ-PBO is Pentico et al.’s EPQ-
PBO and phase dependent backordering rate [2]. Relaxing the assumption on a
constant all the time backordering rate β, they considered two phases of constant
backordering rate. They model their decision procedure onto Pentico et al.’s
decision procedure [1] by adding a comparison with cost of losing all sales when
the backordering rate is above the critical value. Regarding the same model only
using a different methodology, Hsieh and Dye [6] derived optimal solutions and
proposed the decision procedure without comparison of costs. We will modify
our new decision procedure to be applicable to this extension.

The paper is organized in the following manner. In Section 2 a numerical
example is given to illustrate that decisions made with Zhang’s procedure are not
always optimal. A new cost comparison free decision procedure for Pentico et
al.’s EPQ-PBO is proposed in Section 3. In Section 4 a new decision procedure
for the extension EPQ-PBO and phase dependent backordering rate is proposed.
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2 Numerical example

The example that is given in Zhang [5] illustrates that following the Zhang’s pro-
cedure, one can make a right optimal decision. The values of the parameters in
this example are: D = 110 units/year, P = 9200 units/year, C0 = $275 /setup,
Ch = $2.00 /unit/year, Cb = $0.70 /unit/year, C1 = $2.4 /unit. In or-
der to show failure of Zhang’s procedure to make the right optimal decision,
we will give another example. The values of the parameters in our exam-
ple are: D = 5000 units/year, P = 9200 units/year, C0 = $275 /setup,
Ch = $2.00 /unit/year, Cb = $3.2 /unit/year, C1 = $0.5 /unit. Then, ac-
cording to Pentico et al. [1], the value of C ′h is

C ′h = Ch(1−D/P ) = 2 · (1− 5000/9200) = 0.913043.

The crirical values β∗ and β∗∗ according to (1) and (2) respectively are

β∗ = 1−
√

2C0C ′h
DC2

1

= 1−
√

2 · 275 · 0.913043
5000 · 0.52

= 0.366171,

β∗∗ =
PCb(2C0C

′
h −DC2

1 )
PDC ′hC2

1 + DCb(2C0C ′h −DC2
1 )

=

=
9200 · 3.2 · (2 · 275 · 0.913043− 5000 · 0.52)

9200 · 5000 · 0.913043 · 0.52 + 5000 · 3.2 · (2 · 275 · 0.913043− 5000 · 0.52)
=

= 15.0258.

Let β = 0.5 (note that β > β∗ = 0.366171). According to Zhang’s procedure
β ≤ max(β∗, β∗∗) = 15.0258, so we should compare the cost of meeting all
demand

Γ∗EPQ =
√

2C0C ′hD =
√

2 · 275 · 0.913043 · 5000 = 1584.57

with the cost of losing all sales

ΓLS = C1D = 0.5 · 5000 = 2500.

Since, Γ∗EPQ = 1584.57 < 2500 = ΓLS , according to Zhang’s procedure, the
optimal policy is to allow no stockouts.

But, if we calculate the optimal time length of the inventory cycle T ∗, the
optimal fill rate F ∗ and the value of the cost function Γ(T, F ) for (T, F ) =
(T ∗, F ∗), according to the formulas given in Pentico et al. [1], we will obtain
the values

T ∗ = 0.395136, F ∗ = 0.865103, Γ(T ∗, F ∗) = 1560.55.

Comparing this cost of meeting fractional demand with the cost of meeting all
demand, we have

Γ(T ∗, F ∗) = 1560.55 < Γ∗EPQ = 1584.57.
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Therefore, even if β ≤ max(β∗, β∗∗), the cost of meeting fractional demand
is lower than the cost of meeting all demand (which should be the lowest cost
according to Zhang’s procedure), so Zhang’s procedure failed in making optimal
decision. Just for illustration, in this case, Pentico et al.’s decision procedure
[1] will make a right optimal decision.

3 A new decision procedure for EPQ-PBO

With an intention to correct Pentico et al.’s decision procedure [1], Zhang [5]
derived a new critical value β∗∗, defined with (2), and the condition for meeting
fractional demand when β > β∗, where β∗ is the critical value defined with
(1). By taking in consideration the cost of losing all sales as a possible optimal
decision when β > β∗, Zhang at first transformed the inequality Γ(T ∗, F ∗) ≤
C1D into

β ≥ 2C0C
′
b

DC2
1

− C ′b
C ′h

, (3)

and then into β ≥ β∗∗, without providing any details for these transformations.
But, during the second transformation Zhang [5] overlooked the sign of the
expression PDC ′hC2

1 + DCb(2C0C
′
h −DC2

1 ), as we are going to show.
Namely, if we substitute C ′b = Cb(1− βD/P ) into (3) we will have

β ≥ 2C0Cb(1− βD/P )
DC2

1

− Cb(1− βD/P )
C ′h

,

and after some algebraic transformations the last inequality is equivalent to

β(PDC ′hC2
1 + DCb(2C0C

′
h −DC2

1 )) ≥ PCb(2C0C
′
h −DC2

1 ). (4)

Now, if the expression PDC ′hC2
1 + DCb(2C0C

′
h −DC2

1 ) > 0 then (4) implies

β ≥ PCb(2C0C
′
h −DC2

1 )
PDC ′hC2

1 + DCb(2C0C ′h −DC2
1 )

= β∗∗.

Otherwise, if PDC ′hC2
1 +DCb(2C0C

′
h−DC2

1 ) < 0 then (4) implies β ≤ β∗∗. Con-
sequently, the derivation in Zhang [5] is correct only if PDC ′hC2

1 +DCb(2C0C
′
h−

DC2
1 ) > 0.
Another observation that is worth mentioning is that if the expression 2C0C

′
h−

DC2
1 > 0, then the expression PDC ′hC2

1 +DCb(2C0C
′
h−DC2

1 ) > 0 and Zhang’s
procedure will make right decisions. On the other hand, the sign of the expres-
sion 2C0C

′
h −DC2

1 is closely related to the sign of the critical value β∗ as it is
shown below,

2C0C
′
h −DC2

1 > 0 ⇔ 2C0C
′
h

DC2
1

> 1 ⇔ β∗ = 1−
√

2C0C ′h
DC2

1

< 0. (5)

According to (5) and the above discussion, when β∗ < 0 then Zhang’s procedure
will make the right decisions. So, what is left is to correct Zhang’s procedure
when β∗ ≥ 0.
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As it is shown below, in the case β∗ ≥ 0 the cost of losing all sales ΓLS = C1D
is not lower that the cost of meeting all demand Γ∗EPQ =

√
2C0C ′hD, and in

this case to lose all sales can never be an optimal decision. We have,

β∗ = 1−
√

2C0C ′h
DC2

1

= 1−
√

2C0C ′hD

DC1
= 1− Γ∗EPQ

ΓLS
≥ 0 ⇔ Γ∗EPQ ≤ ΓLS . (6)

The last equation (6) gives the necessary and sufficient condition for considering
the policy of losing all sales or the policy of meeting all demand as possible op-
timal decisions. It states that when β∗ ≥ 0 decision makers should not take into
consideration the policy of losing all sales as an optimal decision (consequently,
there is no need of the second critical value β∗∗), and when β∗ < 0 the policy
of meeting all demand should not to be taken into consideration as an optimal
one.

We will construct our new decision procedure upon the above reasoning
given with the equation (6) and the facts about the critical values β∗ and β∗∗

when related to the backordering rate β from Zhang [5] when β∗ < 0, and from
Pentico et al. [1] when β ≥ β∗ (note that for β∗ < 0, as 0 ≤ β ≤ 1, it is always
true that β ≥ β∗).

Now, we can propose our new cost comparison free decision procedure for
Pentico et al.’s EPQ-PBO. We will refer to it as Sign procedure.

1. Determine β∗ from (1).

2. If β∗ ≥ 0, compare β with β∗.

2.1. If β > β∗, the optimal policy is to meet fractional demand with
partial backordering (calculate F ∗, T ∗ and Γ(T ∗, F ∗) according to
the formulas (18)-(19) in Pentico et al. [1]).

2.2. If β ≤ β∗, the optimal policy is to meet all demand (from the basic
EPQ determine T ∗ =

√
2C0/(DC ′h) and the optimal cost Γ∗EPQ =√

2C0C ′hD).

3. If β∗ < 0, determine β∗∗ from (2) and compare β with β∗∗.

3.1. If β > β∗∗, the optimal policy is to meet fractional demand with
partial backordering (calculate F ∗, T ∗ and Γ(T ∗, F ∗) according to
the formulas (18)-(19) in Pentico et al. [1]).

3.2. If β ≤ β∗∗, the optimal policy is to lose all sales (calculate the cost
of losing all sales ΓLS = C1D).

We will illustrate the Sign procedure on three examples. For the above nu-
merical example β∗ = 0.366171 > 0. Then, for β = 0.5 > β∗, the optimal
decision according to Sign procedure is to meet fractional demand with a min-
imum cost of 1560.55. And, for β = 0.3 < β∗, the optimal decision according
to Sign procedure is to meet all demand with a minimum cost of 1584.57. In

5



this case the Sign procedure has made the same decisions as Pentico et al.’s de-
cision procedure [1], and Zhang’s procedure failed in making the right optimal
decision.

For the example given in Zhang [5] β∗ = −0.309715 < 0, so we should
calculate β∗∗ = 0.252638. Then, for β = 0.3 > β∗∗, the optimal decision
according to Sign procedure is to meet fractional demand with minimum cost
of 259.249. But, for β = 0.2 < β∗∗, the optimal decision according to Sign
procedure is to lose all sales with minimum cost of 264. In this case the Sign
procedure has made the same decisions as Zhang’s procedure, and Pentico et
al.’s decision procedure [1] failed in making the right optimal decision.

The example given in Pentico et al. [1] has the following values for the
parameters: D = 1100 units/year, P = 9200 units/year, C0 = $275 /setup,
Ch = $2.00 /unit/year, Cb = $3.2 /unit/year, C1 = $4 /unit. For this example
β∗ = 0.765421 > 0 and β∗∗ = −2.161 < β∗. So, all three procedures Pentico
et al.’s decision procedure [1], Zhang’s procedure and Sign procedure will make
same decisions (to look at the optimal decisions in this case for different values
of β, see [1]).

If the production rate is infinitely large, the Pentico et al.’s EPQ-PBO
[1] will degenerate into Pentico and Drake’s EOQ-PBO [7]. When we sub-
stitute Ch for C ′h, Cb for C ′b and for β∗∗ substitute limP→∞ β∗∗ = (Cb(2C0Ch−
DC2

1 ))/(DChC2
1 ), then the Sign procedure can be used for Pentico and Drake’s

EOQ-PBO [7].
The decision procedure formed upon critical values of the backordering rate

is more practical to implement because it needs less computational effort and
when critical values are calculated once for some given values for model pa-
rameters, it is easy to check for the optimal policy for different values of the
backordering rate. However, sometimes it is difficult to calculate the critical
value, for instance in case of LIFO service rule, the critical value β∗ is very diffi-
cult to derive (Pentico et al. [1]), and the critical value β∗∗ is almost impossible
to obtain (Zhang [5]). In this case, it is more convenient in the decision proce-
dure to impose inequalities with respect to the backordering rate β, as Zhang
[5] suggested in case of LIFO.

Taking into consideration the above discussion, we can give a more concise
correction for Pentico et al.’s decision procedure [1] without deriving the second
critical value. As we mentioned before, the first part of the transformation
that was done in Zhang [5], in order to obtain the critical value β∗∗, is correct
i.e. Γ(T ∗, F ∗) ≤ C1D is equivalent to β ≥ 2C ′bC0/(DC2

1 ) − C ′b/C ′h which is
previously noted as inequality (3). We will use the inequality (3) to decide
between meeting the fractional demand and losing all sales as an optimal policy
when β > β∗. And when β ≤ β∗ we do not need to compare the cost of
meeting all demand with the cost of losing all sales as Pentico et al.’s decision
procedure [1] requires. Knowing that 0 ≤ β ≤ 1 and β ≤ β∗ implies that β∗ ≥ 0,
and according to the previously derived equation (6) we have that the cost of
meeting all demand is less than the cost of losing all sales. So, when β ≤ β∗ the
only optimal decision is to meet all demand. Hence, the more concise decision
procedure for Pentico et al.’s EPQ-PBO will be as follows. We will refer to it
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as corrected P procedure.

1. Determine β∗ from (1).

2. If β ≤ β∗, the optimal policy is to meet all demand.

3. If β > β∗ then, if the inequality (3) holds, the optimal policy is to meet
fractional demand with partial backordering. Otherwise, the optimal pol-
icy is to lose all sales.

We can simplify the computation in Step 3 of the corrected P procedure, if
we check the equivalent inequality β ≥ (C ′b/C ′h)β∗(β∗ − 2) instead of checking
the inequality (3), since the value of β∗ has already been computed. Note that,
if β∗ > 0, then this condition is clearly satisfied, since the term of the right is
negative.

4 A new decision procedure for an extension of
EPQ-PBO

One of the extensions of Pentico et al.’s EPQ-PBO is Pentico et al.’s EPQ-
PBO and phase dependent backordering rate [2]. Relaxing the assumption on a
constant all the time backordering rate β, they considered two phases of constant
backordering rate. During the first phase, before the start of production, the
backordering rate is β, and during the second phase, after production starts, the
backordering rate is ρβ, where 1 ≤ ρ ≤ 1/β. Note that for ρ = 1 this extension
coincides with Pentico et al.’s EPQ-PBO [1]. We will modify the Sign procedure
to be applicable to the extension.

Using the same notation from Pentico et al. [2], the critical value of the
backordering rate β developed by Pentico et al. [2], which we will denote with
β∗new, below which the optimal policy is either to meet all demand or to lose
all sales, and above which the optimal policy is either to allow stockouts with
partial backordering and meet fractional demand or to lose all sales is

β∗new =
β∗

1 + (ρ− 1)(D/P )β∗
, (7)

where β∗ is defined with (1). Then, the optimality of policies are determined
by comparison of costs.

In order to compose a cost comparison free decision procedure and still be
able to maintain the critical values of the backordering rate, we will modify
the Sign procedure. The equation (6) which provides necessary and sufficient
conditions for considering the policy of meeting all demand or the policy of
losing all sales as possible optimal policies, will still be the essential ingredient
in the new modified procedure. When β∗ ≥ 0 we will decide between meeting
fractional demand and meeting all demand by comparing the backordering rate
β with Pentico et al.’s [2] critical value β∗new defined with (7). But, when β∗ < 0
we need to develop another critical value, analogous to β∗∗ defined with (2).

7



When β∗ < 0, we need to choose between meeting fractional demand and
losing all sales, depending on the amount of cost. Similarly as in Zhang [5], a
new critical value of the backordering rate can be derived from the inequality
Γ(T ∗, F ∗) < C1D, where Γ(T ∗, F ∗) is the value of the cost function when frac-
tional demand is met calculated at the solution (T ∗, F ∗) from Pentico et al. [2].
The last inequality is equivalent to

2C0C
′
h −DC2

1 −
DC2

1C ′hβ

C ′b(1− (ρ− 1)βD/P )2
< 0. (8)

Two cases should be distinguished, ρ = 1 and ρ > 1. When ρ = 1, the inequality
(8) is equivalent to

β >
PCb(2C0C

′
h −DC2

1 )
PDC ′hC2

1 + DCb(2C0C ′h −DC2
1 )

= β∗∗, (9)

which is as expected since for ρ = 1 the observed model is same as Pentico et
al.’s EPQ-PBO [1]. When ρ > 1, inequality (8) is equivalent to

β > β∗∗new(ρ) =

D
P + A + 2(ρ− 1)D

P −
√(

D
P + A

)2

+ 4(ρ− 1)D
P A

2ρ(ρ− 1)D2

P 2

, (10)

where

A =
DC2

1C ′h
Cb(2C0C ′h −DC2

1 )
. (11)

Using the notation (11), we can define the critical value β∗∗new(ρ) for ρ = 1 with

β∗∗new(1) = β∗∗ =
1

D
P + A

. (12)

We can see that the critical value β∗∗new(ρ) is well defined for all 1 ≤ ρ ≤ 1/β
since limρ→1 β∗∗new(ρ) = 1/(D/P + A) = β∗∗ = β∗∗new(1).

Now, we can state our new modified cost comparison free decision procedure
for Pentico et al.’s EPQ-PBO and phase dependent backordering rate as follows.
We will refer to it as modified Sign procedure.

1. Determine β∗ from (1).

2. If β∗ ≥ 0, determine β∗new from (7) and compare β with β∗new.

2.1. If β > β∗new, the optimal policy is to meet fractional demand with
partial backordering (calculate F ∗, T ∗ and Γ(T ∗, F ∗) according to
the formulas (9)-(11) in Pentico et al. [2]).

2.2. If β ≤ β∗new, the optimal policy is to meet all demand (from the basic
EPQ determine T ∗ =

√
2C0/(DC ′h) and the optimal cost Γ∗EPQ =√

2C0C ′hD).
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3. If β∗ < 0, determine β∗∗new(ρ) from (10)-(12) and compare β with β∗∗new(ρ).

3.1. If β > β∗∗new(ρ), the optimal policy is to meet fractional demand with
partial backordering (calculate F ∗, T ∗ and Γ(T ∗, F ∗) according to
the formulas (9)-(11) in Pentico et al. [2]).

3.2. If β ≤ β∗∗new(ρ), the optimal policy is to lose all sales (calculate the
cost of losing all sales ΓLS = C1D).

We are going to illustrate the modified Sign procedure on the example from
Zhang [5] for β = 0.2 and ρ = 1.5, which means that the percentage of demand
backordered increases from 0.2 to 0.3 after production begins. At first, the
critical value β∗ calculated from (1) is β∗ = −0.309715 < 0, and according to the
procedure we should calculate β∗∗new(ρ) from (10)-(11) for ρ = 1.5 > 1. We have
A = 3.94628, and β∗∗new(ρ) = 0.251879. Since β = 0.2 < β∗∗new(ρ) = 0.251879
according to the procedure the optimal policy is to lose all sales with optimal
cost ΓLS = 264.

As mentioned previously, if ρ = 1 this model will degenerate into Pentico
et al.’s EPQ-PBO with constant all the time backordering rate [1], and the
modified Sign procedure will be same as the Sign procedure. If ρ = 1 and the
production rate is infinitely large, this model will degenerate into Pentico and
Drake’s EOQ-PBO [7], and when we substitute Ch for C ′h, Cb for C ′b, C1(1−β)
for C ′1, then for β∗new substitute limP→∞ β∗new = 1 −

√
(2C0Ch)/(DC2

1 ) and
for β∗∗new(ρ) substitute limP→∞ β∗∗ = (Cb(2C0Ch −DC2

1 ))/(DChC2
1 ), then the

modified Sign procedure can be used for Pentico and Drake’s EOQ-PBO [7].
In order to provide a more concise decision procedure as we did in the pre-

vious section, we will use the inequality (8) to decide between meeting the
fractional demand and losing all sales when β > β∗new. But, when β ≤ β∗new we
will check the sign of β∗ to decide between the policy of meeting all demand and
the policy of losing all sales as an optimal one, according to the derived equation
(6). Hence, another decision procedure for Pentico et al.’s EPQ-PBO and phase
dependent backordering rate that we will refer to as modified P procedure is as
follows.

1. Determine β∗ from (1) and β∗new from (7).

2. If β ≤ β∗new then, if β∗ ≥ 0 the optimal policy is to meet all demand.
Otherwise, the optimal policy is to lose all sales.

3. If β > β∗new then, if the inequality (8) holds, the optimal policy is to
meet fractional demand with partial backordering. Otherwise, the optimal
policy is to lose all sales.

It is apparent that the above modified P procedure needs more computa-
tional efforts, when the checking of the inequality (8) is an issue. The compu-
tation in Step 3 of the modified P procedure can be simplified, as it was done
within corrected P procedure. Instead of checking the inequality (8), we can
check the equivalent inequality β/(1−β(1/β∗new−1/β∗))2 > (C ′b/C ′h)β∗(β∗−2),
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since the values of β∗ and β∗new have already been computed. And if β∗ > 0,
then this condition is clearly satisfied, since the term of the right is negative
and the term of the left is always positive.

5 Conclusions

In Zhang [5], the author proposed the amended decision procedure for the Pen-
tico et al.’s EPQ-PBO [1], by developing another critical value of the backorder-
ing rate. In this paper we showed that this amended decision procedure does
not always make optimal decisions. We found out what caused such irregularity
and fixed it by deriving necessary and sufficient conditions for considering the
policy of losing all sales or the policy of meeting all demand as possible optimal
decisions. We proposed a new cost comparison free decision procedure based on
these conditions. Then we modified this procedure in order for it to be applica-
ble to the Pentico et al.’s EPQ-PBO and phase dependent backordering rate [2].
These procedures were compared to more concise ones that avoid derivation of
second critical values for the backordering rate and check the inequalities with
respect to the backordering rate.
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