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Abstract

Two new derivative-free nonmonotone line search methods for uncon-
strained optimization are proposed and analyzed. Convergence is estab-
lished under standard conditions. Numerical results show good perfor-
mance of the proposed methods.
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1 Introduction

Let us consider the problem of unconstrained optimization:

(1) min
x∈Rn

f(x),

where f : Rn → R is bounded from below and has continuous partial derivatives
that are not available.

A line search method for solving the problem (1), generates a sequence of
iterates {xk} ∈ R

n by the iterative formula xk+1 = xk + αkdk, where dk is
a search direction at xk and αk > 0 is a step size which is usually chosen to
minimize the objective function f along the direction dk. For more details
about line search methods see [6]. The majority of line search methods require
decrease in f at each iteration, which means that the corresponding sequence of
function values {f(xk)} = {fk} monotonically decreases. This may sometimes
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result in a slow convergence. On the other hand, the nonmonotone line search
methods tend to converge faster and avoid converging to local minima, see [3, 4,
8, 9]. All of the above mentioned nonmonotone methods require the gradient
of the objective function f and are thus unsuitable for the problem (1), or
for problems where the objective function f is not smooth. In such situations,
derivative-free methods based only on values of the objective function are more
appropriate, see [6].

Diniz-Ehrhardt et al. [2] have proposed a derivative-free line search strategy
which combines and extends the ideas form [3] and [4]. For given sequences
{ηk} and {βk}, k = 0, 1, 2, . . . such that:

(2) ηk > 0,
∞
∑

k=0

ηk = η < ∞ and βk > 0, lim
k∈K

βk = 0 ⇒ lim
k∈K

∇f(xk) = 0,

where ∇f is the gradient of f and K ⊆ N is an infinite set of indices, and a di-
rection dk, the step size αk > 0 is determined using the following nonmonotone
line search rule:

(3) f(xk + αkdk) ≤ f̄k + ηk − α2
kβk,

with f̄k = max{f(xk−j) | 0 ≤ j ≤ m(k)− 1}, where m(k) = min{k+1,M} for
k = 0, 1, 2, . . . and some M ∈ N. We will refer to this method as M -method.
In [2], the convergence with probability 1 is established for the M -method,
when the search directions are randomly chosen and independent, bounded
and descent with a fixed probability p > 0.

In this paper, we propose new derivative-free nonmonotone line search
methods based on the line search rule (3) where the term f̄k is chosen dif-
ferently. We will establish the same convergence result as in [2], under same
conditions. Numerical results show that the proposed new methods are com-
petitive with the one from [2]. The rest of the paper is organized as follows: the
new methods are formulated in section 2, while their convergence is established
in section 3. The numerical results are presented in section 4.

2 New non-monotone line search rules

Assume that the sequences {ηk} and {βk} satisfy the conditions (2). Let {rk},
rk ∈ [0, 1] for all k = 0, 1, . . . . The first new line search rule has the form of
(3), where f̄k is chosen to be f̄k = Ck, where {Qk} and {Ck} are recursive
sequences defined by:

(4) Qk+1 = rkQk + 1, Ck+1 =
rkQk(Ck + ηk) + fk+1

Qk+1
,



with Q0 = 1, C0 = f0. We will refer to it as Ck-line search rule and to the
corresponding method as Ck-method. The idea for a sequence {Ck} comes from
Zhang and Hager [9], and is used by many authors, e.g. [1].

The second line search rule also has the form of (3), where f̄k is defined

by f̄k = max
{

fk,
∑m(k)−1

r=0 λkrfk−r

}

, where m(k) = min{k + 1,M} for k =

0, 1, 2, . . . and someM ∈ N, and λkr are such that λkr ≥ λ, r = 0, 1, ...,m(k)−1

and
∑m(k)−1

r=0 λkr = 1, for all k = 0, 1, . . . and some λ ∈ (0, 1]. We will refer
to it as λ-line search rule and to the corresponding method as λ-method. The
idea of a convex combination of last M functional values has origin in Ulbrich
[7], but it has not been given much attention until in [8].

Now we state the model algorithm for Ck- and λ-method.

Algorithm 1 (Model algorithm (Ck-method / λ-method)).
Choose x0 ∈ R

n and sequences {ηk} and {βk} that satisfy the conditions (2).

Step 1. Compute the search direction dk such that ‖dk‖ ≤ ∆.

Step 2. Compute the term f̄k (according to Ck-method / λ-method).

Step 3. Choose 0 < αk ≤ 1 such that f(xk + αkdk) ≤ f̄k + ηk − α2
kβk.

Step 4. Set xk+1 = xk + αkdk, k = k + 1 and go to Step 1. ✷

Let us note that ηk > 0 ensures that the line-search rule in Step 3 is satisfied
for a sufficiently small step size αk, so the Algorithm 1 is well defined.

3 Convergence results

First we will prove some useful properties of the Ck- and λ-method.

Lemma 1. Let {xk} be an iterative sequence generated by Algorithm 1 using

the Ck-method. Then fk ≤ Ck ≤ Ck−1 + ηk−1 for all k ∈ N.

Proof. For all k ∈ N, by Step 3 in Algorithm 1 we have fk ≤ Ck−1 + ηk−1 −
α2
k−1βk−1 ≤ Ck−1 + ηk−1. Then, the proof proceeds as the proof of Lemma 2.2

in [1]. ✷

Lemma 2. Let {xk} be an iterative sequence generated by Algorithm 1 using

the λ-method. Then:

fk ≤ f0 +

k−1
∑

j=0

ηj − λ

k−2
∑

j=0

α2
jβj − α2

k−1βk−1 ≤ f0 +

k−1
∑

j=0

ηj − λ

k−1
∑

j=0

α2
jβj .

Proof. The proof is by induction. For k = 1, since λ ≤ 1, and Step 3 from
Algorithm 1 we have f1 ≤ f0 + η0 − α2

0β0 ≤ f0 + η0 − λα2
0β0. Assume that the

assumption is true for all j, 1 ≤ j ≤ k. We have two cases:



Case 1. max
{

fk,
∑m(k)−1

r=0 λkrfk−r

}

= fk

Case 2. max
{

fk,
∑m(k)−1

r=0 λkrfk−r

}

=
∑m(k)−1

r=0 λkrfk−r

The proof can be completed by following the technique of the proof of
Lemma 1 in [8], with additional consideration of the conditions (2). ✷

Let us note that Lemma 1 and Lemma 2 imply that a sequence {xk} generated
by Algorithm 1 is such that xk ∈ {x ∈ R

n | f(x) ≤ f0 + η} for all k. The next
lemma gives another useful property shared by the Ck- and λ-method.

Lemma 3. Let {xk} be an iterative sequences generated by Algorithm 1. Then,

there exists an infinite subset of indices K ⊆ N such that limk∈K α2
kβk = 0.

Proof. If Ck-method is used we have:

Ck+1 =
rkQk(Ck+ηk)+fk+1

Qk+1
≤

rkQk(Ck+ηk)+Ck+ηk−α2
k
βk

Qk+1
= Ck + ηk −

α2
k
βk

Qk+1
.

Now, summing up the first k + 1 inequalities we have Ck+1 ≤ C0 +
∑k

j=0 ηj −
∑k

j=0

α2
jβj

Qj+1
. From Lemma 1, since f is bounded from below with a constant

K > 0, for all k we have:

k
∑

j=0

α2
jβj

Qj+1
≤ C0 +

k
∑

j=0

ηj − Ck+1 ≤ f0 + η − fk+1 ≤ f0 + η −K,

which implies that
∑∞

j=0

α2
jβj

Qj+1
< +∞. Since Qj+1 ≤ j + 2, we have that

lim infj→∞ α2
jβj = 0.

If λ-method is used, by Lemma 2 we have:

fk ≤ f0 +

k−1
∑

j=0

ηj − λ

k−1
∑

j=0

α2
jβj ≤ f0 + η − λ

k−1
∑

j=0

α2
jβj .

Now, since f is bounded from below with a constant K > 0 and λ > 0, for all
k we have:

k−1
∑

j=0

α2
jβj ≤

f0 + η − fk+1

λ
≤

f0 + η −K

λ
,

which implies that
∑∞

j=0 α
2
jβj < +∞ and lim infj→∞ α2

jβj = 0, which com-
pletes the proof. ✷

Let us note that, if 0 < rk < 1 for all k in Ck-method, then the stronger result
limj→∞ α2

jβj = 0 can be proven. Now we state one of the main theorems for

the proposed derivative-free nonmonotone line search methods. Since f̄k ≥ fk
is valid for both Ck- and λ-method, the proof follows from Lemma 3, mimicing
the proof of Theorem 1 in [2].



Theorem 1. Let {xk} be an iterative sequence generated by Algorithm 1. As-

sume that (x∗, d) is a limit point of the subsequence {(xk, dk)}k∈K where K ⊆ N

is an infinite subset of indices. Then ∇f(x∗)Td ≥ 0. ✷

Using Lemma 3, under additional assumptions for the search directions dk,
such as: ‖dk‖ ∈ [∆min,∆max] and ∇f(xk)

T dk ≤ −θ‖∇f(xk)‖‖dk‖ for infinitely
many k, where 0 < ∆min < ∆max < ∞ and 0 < θ < 1, it can be proven
that Algorithm 1 finds stationary points up to any arbitrary precision (see
Corollary 1 in [2]). In order to have truly derivative-free methods, we can relax
the above additional conditions in such a way that the search directions are
randomly chosen, independent, bounded and descent with a fixed probability
p > 0. This way, convergence with probability 1 to a stationary point can be
established (see Theorem 2 in [2]).

4 Numerical results

In this section we present some of the results from testing M -, Ck-, λ- and
the “monotone” line-search method (the last one by using M = 1 in (3)).
All test problems are from Moré et al. [5] and all of them have optimal
function value f∗ = 0. The sequences in (2) have been chosen such that
βk ≡ 1 and ηk = f0/k

1.1. Search direction dk = −ĝk/σk is used, where ĝk
is a discrete gradient approximation of ∇f(xk), and σk is the spectral coef-
ficient (see [2]). The rest of parameters for M -, Ck-, λ-method are M = 5,
rk = 0.85 for all k and λkr = 1/m(k) for all r. The results are reported
in Table 1, where It denotes the number of iterations, Evalf denotes num-
ber of function evaluations, f is the function value at the last iterate, normg

is the norm of the gradient approximation at the last iterate. All methods
tested on the first problem (MGH26) stopped after the maximum of 5000
iterations was reached, all methods except Ck-method tested on the second
(MGH22) and third (MGH21) problem stopped after the maximum of 500000
function evaluations was exceeded, and the Ck-method tested on the sec-
ond and third problem stopped when |fk| ≤ 10−9. Additional numerical re-
sults are also available at http://www.institutzamatematika.com/index.

php/Irena_Stojkovska_Curriculum_Vitae. All results show good perfor-
mance of the proposed new derivative-free nonmonotone line search methods
compared with the M -method. There are many problems for which nonmono-
tone methods converge faster to the solution then the “monotone” one, which
is as expected.



5 Conclusions

In this paper two new derivative-free nonmonotone line search methods were
proposed and their convergence established under same assumptions as in [2].
Numerical results show good performance of the proposed methods. The fact
that nonmonotone methods are able to avoid local minima, leads to the idea
to test these nonmonotone methods on noisy functions.

Prb n It Evalf f normg

“Monotone” line search / M -method, [2]

MGH26 10 5000 / 5000 422555 / 422885 2.80E − 05 / 2.80E − 05 2.36E− 05 / 7.40E − 06

MGH22 100 2428 / 2427 500182 / 500048 4.21E − 06 / 1.22E − 04 3.81E− 03 / 2.19E − 01

MGH21 100 2424 / 2425 500073 / 500137 1.02E − 05 / 5.52E − 07 2.88E− 03 / 6.65E − 04

Ck-method / λ-method

MGH26 10 5000 / 5000 382384 / 342569 2.80E − 05 / 2.80E − 05 6.41E− 05 / 6.21E − 06

MGH22 100 533 / 2429 109040 / 500165 4.25E − 11 / 1.22E − 04 1.43E− 06 / 5.92E − 03

MGH21 100 1907 / 2444 390414 / 500193 9.97E − 10 / 2.26E − 08 3.03E− 05 / 1.47E − 04

Table 1: Results for tested line search methods with spectral gradient direction
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