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Abstract

A nonmonotone line search method for optimization in noisy environ-
ment is proposed. The method is defined for arbitrary search directions
and uses only the noisy function values. Convergence of the proposed
method is established under a set of standard assumptions. The compu-
tational issues are considered and the presented numerical results affirm
that nonmonotone strategies are worth considering. Four different line
search rules with three different directions are compared numerically. The
influence of nonmonotonicity is discussed.
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1 Introduction

The problem under consideration is

min
x∈Rn

f(x) (1)

assuming that f : Rn → R has continuous partial derivatives and only noisy
measurements F (x) are available,

F (x) = f(x) + δ(x), (2)

at every x ∈ Rn, where δ(x) represents the noise at x.
Such problems are very common when physical system measurements or

computer simulations are used for approximations. One approach to cope with
noise is to collect several function evaluations F (x) at each value x generated in
the optimization process, then take the average of these values as an estimate for
f(x), Andradottir [1]. The averaging procedure increases the number of function
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evaluations but saves the total number of iterations and it is well justified for
a number of problems. However, it is not always possible to get an arbitrary
number of function evaluation at the same point.

Random search is another approach in solving the problem (1). Within this
approach a random search direction dk is generated at each iteration and the
new point is defined as xk + dk if the following inequality is satisfied

F (xk + dk) < F (xk)− τk. (3)

Here τk > 0 is a threshold value and it is convenient to set it at the noise level.
The drawback of this approach is that an inappropriate threshold value may
results in rejecting many iterates, see [22].

Among direct search methods that have been considered for optimization in
presence of noise is the coordinate search method, Lucidi and Sciandrone [17].
Namely, starting from an iterate xk, this method searches along a coordinate
direction dk for a stepsize αk that satisfies

F (xk + αkdk) < F (xk)− γα2
k, (4)

where γ > 0. Only noisy functional values are used, which makes the method
derivative-free. As smaller steps are allowed the method is more immune to the
noise influence than the threshold approach. Some of the recent methods for
optimization of noisy functions are considered in [3, 14, 23, 25].

Nonmonotone line search strategies are a well developed class of methods
for classical optimization. The dominant three nonmonotone rules are originally
presented in Grippo et al. [11], Li and Fukushima [16] and Zhang and Hager
[26]. All of these three strategies are successfully used for solving different
problems in either derivative based or derivative-free methods, [24, 8, 19, 5, 15,
4]. There are several important properties of nonmonotone line search methods.
First of all, one can consider search directions which are not necessarily descent
in all iterations as happens in many cases, starting with Symmetric Rank 1,
Spectral gradient, gradient approximations etc. Further more these methods are
applicable even if the gradient is not available. The importance of this property
is even more emphasized in noisy environment where the original function (and
its gradient) might be unknown. An additional property of nonmonotone line
search rules that makes them attractive is the ability of converging to a global
solution of problems with multiple local and global solutions. This property is
reported in several papers, see for example [26].

There are several papers dealing with unconstrained optimization problems
within line search framework and nonmonotone methods in particular, with re-
sults that are applicable on noisy problems even if the noise is not explicitly
assumed, [5, 6, 8, 17, 19]. Different line search rules are considered and the
set of search directions varies from gradient based directions, then second-order
directions like QN directions, approximate gradient directions to random di-
rections. The main idea in this paper is to present a unified theory for such
methods if the noisy functional values are the only available values and the line
search has to be defined with these values. Therefore the method proposed in
this paper is a derivative-free nonmonotone line search method for an arbitrary
direction dk. Nonmonotonicity help in coping with the noise. The convergence
analysis relays heavily on results from [5, 8, 17] but extends them in the sense
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that the presented statements cover the case of noisy functional values. In prac-
tical implementation we consider search directions that require approximations
of gradient and/or Hessian in presence of noise, and we give a gradient ap-
proximation procedure in presence of noise. Thus in Section 2 we present the
model algorithm and analyze its convergence in Section 3. Numerical results
are presented in Section 4.

2 Model algorithm

For solving (1) using the noisy measurements (2), we will consider two non-
monotone line search strategies of the following form

F (xk + αkdk) ≤ F k + ηk − α2
kβk. (5)

The term F k in the first line search strategy is defined by

F k = max{F (xk), . . . , F (xmax{k−M+1,0})}, (6)

for an arbitrary but fixed M ∈ N. The above formula (6) is analogous to the
one in [11], where the true functional values f(x) are used.

In the second line search strategy F k is defined by

Qk+1 = rkQk + 1, F k+1 =
rkQk(F k + ηk) + F (xk+1)

Qk+1
, (7)

with rk ∈ [rmin, rmax], 0 ≤ rmin ≤ rmax ≤ 1, F 0 = F (x0) and Q0 = 1. The
definition of the sequence {F k}, given by (7), is similar to the one proposed in
[26] and modified in [5], but here we use the noisy functional values.

The sequence {ηk}, [16] is such that

ηk > 0,

∞∑

k=0

ηk = η < ∞, (8)

while {βk}, [8] is bounded and

βk > 0 and lim
k∈K

βk = 0 ⇒ lim
k∈K

gk = 0, (9)

for all infinite subsets of indices K ⊂ N, where gk = g(xk) is the gradient of f
at xk.

It is easy to see that
F k ≥ F (xk), (10)

if F k is defined either by (6) or by (7). Furthermore ηk > 0 and thus the
line search (5) indeed generates a nonmonotone sequence of noisy functional
values {F (xk)}. Roughly speaking, when the iterates are far from the solution,
the sequence of true functional values {f(xk)} will also be nonmonotone, since
far from the solution the noise has small influence. On the other hand when
the iterates are approaching the solution the sequence {F (xk)} becomes more
monotone but due to the larger influence of the noise in the vicinity of the so-
lution, the sequence {f(xk)} is more likely to stay nonmonotone. The sequence
{βk} has a forcing nature, and the trivial choice βk ≡ 1 is admissible.

Both nonmonotone line search methods can be stated as follows.
Model algorithm. Given {ηk} such that (8) holds and {βk} such that (9)
holds, x0 ∈ Rn and D > 0.
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Step 1. Compute dk such that ‖dk‖ ≤ D.

Step 2. Compute F k.

Step 3. Choose αk > 0 such that (5) is satisfied.

Step 4. Set xk+1 = xk + αkdk and k = k + 1.

Specifying F k in Step 2 of Model algorithm as (6) or (7), we cover both of
the line search strategies presented above. The positive sequence {ηk} ensures
that the the line search rule (5) is well defined as αk > 0 exists for an arbitrary
direction dk.

3 Convergence analysis

For establishing the convergence of proposed methods the following assumptions
on the objective function and noise are needed.

A1 The objective function f ∈ C1(Rn) is bounded from below i.e. there exists
m such that f(x) ≥ m for all x ∈ Rn

A2 The realized noise is bounded from above i.e there exists a constant ∆ > 0
such that

|δ(xk)| ≤ ∆. (11)

The boundedness of noise stated in A2 might look as a strong assumption at
the first glance. For example the white noise is not bounded in general. However
we are interested only in the realized noise and thus A2 is not a big obstacle in
practical implementation of the algorithm. The same set of assumptions is used
in [17] as well.

Let us first consider Model algorithm with F k defined by (6). The analysis
presented below follows closely the results presented in [6, 8] with the important
difference being the fact that the noisy functional values are used. So we define
an additional sequence, [8],

Vl = max{F (x(l−1)M+1), . . . , F (xlM )}, l = 1, 2, . . .

and ν(l) ∈ {(l− 1)M, . . . , lM} such that F (xν(l)) = Vl. The following result for
the line search rule (5), where F k is defined by (6), can be obtained.

Theorem 3.1. Assume that {xk} is generated by Model algorithm with F k

defined by (6) and that A1-A2 hold. Then,

lim
l→∞

α2
ν(l)−1βν(l)−1 = 0.

Proof. The line search rule implies for l = 1, 2, ...

F (xlM+1) ≤ max
1≤j≤M

F (x(l−1)M+j) + ηlM − α2
lMβlM

= Vl + ηlM − α2
lMβlM

≤ Vl + ηlM
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With similar reasoning we obtain

F (xlM+2) ≤ max
1≤j≤M

F (x(l−1)M+1+j) + ηlM+1 − α2
lM+1βlM+1

≤ max{Vl, F (xlM+1)}+ ηlM+1 − α2
lM+1βlM+1

≤ Vl + ηlM + ηlM+1 − α2
lM+1βlM+1

≤ Vl + ηlM + ηlM+1

By induction we have

F (xlM+s) ≤ Vl +
s−1∑

j=0

ηlM+j − α2
lM+s−1βlM+s−1,

for all s = 1, 2, ..., M .
Since ν(l + 1) ∈ {lM + 1, ..., lM + M},

Vl+1 = F (xν(l+1)) ≤ Vl +
M−1∑

j=0

ηlM+j − α2
ν(l+1)−1 βν(l+1)−1.

So, for all l = 1, 2, ... we have

F (xν(l+1)) ≤ F (xν(l)) +
M−1∑

j=0

ηlM+j − α2
ν(l+1)−1 βν(l+1)−1. (12)

Now, adding the above inequalities for l = 1, 2, ..., L we obtain

F (xν(L+1)) ≤ F (xν(1)) +
(L+1)M−1∑

j=M

ηj −
L∑

j=1

α2
ν(j+1)−1βν(j+1)−1.

As F (x) = f(x) + δ(x) the assumption A2 implies

f(xν(L+1)) ≤ f(xν(1)) +
(L+1)M−1∑

j=M

ηj −
L∑

j=1

α2
ν(j+1)−1βν(j+1)−1 + 2∆.

Now, A1 and (8) imply that for all L = 1, 2, ...,

L∑

j=1

α2
ν(j+1)−1βν(j+1)−1 ≤ f(xν(1)) +

(L+1)M−1∑

j=M

ηj + 2∆− f(xν(L+1)) ≤

≤ f(xν(1)) + η + 2∆−m

Therefore
∑∞

j=1 α2
ν(j+1)−1βν(j+1)−1 < ∞, and limj→∞ α2

ν(j)−1βν(j)−1 = 0,
which completes the proof.

The analogous result for the line search rule (5), where F k is defined by (7),
can be proved as demonstrated below. The proof is closely relying on [5].

Theorem 3.2. Assume that {xk} is generated by Model algorithm with F k be
defined by (7) and that A1-A2 are satisfied. Then there exists an infinite subset
K ⊂ N such that,

lim
k∈K

α2
kβk = 0.
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Moreover, if rmax < 1 then
lim

k→∞
α2

kβk = 0.

Proof. Let {xj} be a sequence generated by Model algorithm and F k be defined
by (7). Then, for any j

F (xj+1) ≤ F j + ηj − α2
jβj

and

F j+1 =
rjQj(F j + ηj) + F (xj+1)

Qj+1
≤

≤ rjQj(F j + ηj) + F j + ηj − α2
jβj

Qj+1
=

=
Qj+1(F j + ηj)− α2

jβj

Qj+1
=

= F j + ηj −
α2

jβj

Qj+1
.

Summing up the above inequalities for j = 0, 1, ..., k we have

F k+1 ≤ F 0 +
k∑

j=0

ηj −
k∑

j=0

α2
jβj

Qj+1
.

As F 0 = F (x0),
∑

j ηj < η and F k+1 ≥ F (xk+1) by (10),

k∑

j=0

α2
jβj

Qj+1
≤ F 0 +

k∑

j=0

ηj − F k+1 ≤ F (x0) + η − F (xk+1).

Having in mind that F (x) = f(x) + δ(x), A1 and A2 imply

k∑

j=0

α2
jβj

Qj+1
≤ f(x0) + η − f(xk+1) + 2∆ ≤ f(x0) + η −m + 2∆.

So,
∞∑

j=0

α2
jβj

Qj+1
< ∞. (13)

Given that
Qj+1 = rjQj ≤ Qj + 1 ≤ . . . ≤ j + 2

we can conclude that lim infj→∞ α2
jβj = 0 i.e. there exists an infinite subset

K ⊂ N such that limj∈K α2
jβj = 0.

If rmax < 1 then

Qj+1 = 1 +
j∑

p=0

p∏
q=0

rj−q ≤ 1 +
j∑

p=0

rp+1
max ≤

∞∑
p=0

rp
max =

1
1− rmax

,

and from (13) we conclude that limj→∞ α2
jβj = 0, which completes the proof.
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The last two theorems provide an infinite subsequence {xk}k∈K of {xk}
such that limk∈K α2

kβk = 0, if {xk} is generated by either of the two considered
line searches in Model algorithm. Furthermore, under Assumption A2, for a
sequence {xk}, we define the sequence {δk} by

δk = sup
x∈Bk

|δ(x)|, (14)

where Bk = {x ∈ Rn|‖xk − x‖ ≤ D}, and D > 0 is the upper bound of the
search directions dk from Model algorithm.

The following theorem gives the convergence result for any sequence {xk}
generated by Model algorithm. The idea is similar to the one presented in [17].

Theorem 3.3. Assume that A1-A2 hold and that {xk} is an iterative se-
quence generated by Model algorithm. Assume that (x∗, d) is a limit point of
the subsequence {(xk, dk)}k∈K , where K is an infinite subset of N such that
limk∈K α2

kβk = 0. Assume also that for the sequence {δk} defined by (14) the
following condition is satisfied,

lim
k∈K

δk

αk
= 0. (15)

Then,
〈g(x∗), d〉 ≥ 0.

Proof. Let K1 be an infinite subset of K such that limk∈K1 xk = x∗ and
limk∈K1 dk = d. The theorem conditions imply

lim
k∈K1

α2
kβk = 0.

If some subsequence of {βk} converges to zero, then g(x∗) = 0 and the proof is
done.

Otherwise, we have that limk∈K1 αk = 0. So, for k ∈ K1 large enough we
have that αk < 1. Without loss of generality let us assume that αk < 1 for all
k ∈ K1. Therefore, for k ∈ K1, the stepsize αk that fulfills the line-search rule
is necessarily preceded by stepsize α′k such that

lim
k∈K1

α′k = 0 (16)

and
F (xk + α′kdk) > F k + ηk − (α′k)2βk.

From (8) and (10), we have

F (xk + α′kdk) > F (xk)− (α′k)2βk.

As F (x) = f(x) + δ(x), taking into account (14) we get

f(xk + α′kdk) > f(xk)− (α′k)2βk − 2δk

and
f(xk + α′kdk)− f(xk)

α′k
> −α′kβk − 2

δk

α′k
,
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for all k ∈ K1. Since, α′k > αk we have that for all k ∈ K1,

f(xk + α′kdk)− f(xk)
α′k

> −α′kβk − 2
δk

αk
.

By the Mean Value Theorem, for all k ∈ K1 there exists ξk ∈ [0, 1] such that

〈g(xk + ξkα′kdk), dk〉 > −α′kβk − 2
δk

αk
.

Therefore, for all k ∈ K1,

〈g(xk + ξkα′kdk)− g(xk), dk〉+ 〈g(xk), dk〉 > −α′kβk − 2
δk

αk

and
〈g(xk), dk〉 > −α′kβk − 2

δk

αk
− ‖g(xk + ξkα′kdk)− g(xk)‖‖dk‖.

Since βk and ‖dk‖ are bounded, from (15) and (16) we have that

lim
k∈K1

(
α′kβk + 2

δk

αk
+ ‖g(xk + ξkα′kdk)− g(xk)‖‖dk‖

)
= 0.

As limk∈K1〈g(xk), dk〉 = 〈g(x∗), d〉, we conclude that 〈g(x∗), d〉 ≥ 0.

We can prove that under additional assumptions on search direction, station-
ary points can be achieved up to any arbitrary precision by Model algorithm,
as in [8], even when only noisy measurements (2) are used for optimization.

Theorem 3.4. Assume that all conditions from Theorem 3.3 hold, 0 < ρ < 1,
0 < d < D < +∞. Suppose that the level set Ω = {x ∈ Rn|f(x) ≤ f(x0) + η +
2∆} is bounded and that K1 is an infinite subset of K such that for all k ∈ K1

the search directions dk satisfy

d ≤ ‖dk‖ ≤ D and 〈dk, g(xk)〉 ≤ ρ‖g(xk)‖‖dk‖. (17)

Than, for all ε > 0, there exists k ∈ N such that ‖g(xk‖ ≤ ε.

Proof. From Model algorithm, equation (2) and Assumption A2, we have
that f(xk) ≤ f(x0) + η + 2∆ for all k ∈ N, so the sequence {xk} is bounded.
Furthermore, the proof proceeds as the proof of Corollary 1 in [8].

Note that even thought the nonmonotone line search method does not nec-
essary produce descent directions, it is natural to suppose that the condition
(17) in Theorem 3.4 can hold for an infinitely many search directions, since one
of the main purpose of line search methods is eventually making a reduction in
objective functional values.

4 Numerical results

We tested three different nonmonotone line-search methods and compare them
to the classical Armijo rule but with noisy function values on a set of 18 problems
from Moré, Garbow and Hillstrom, [18]. All problems have the loss function of
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Problem n x0

Helical valley function 3 (−1, 0, 0)
Biggs EXP6 function 6 (10, 20, 10, 10, 10, 10)
Gaussian function 3 (4, 10, 0)
Powell badly scaled function 2 (0, 5)
Box three-dimensionaly function 3 (0, 10, 20)
Variably dimensioned function 10 (9/10, 8/10, ..., 0)
Watson function 6 (0, 0, ..., 0)
Penalty function I 4 (1, 2, 3, 4)
Penalty function II 4 (5/2, 5/2, 5/2, 5/2)
Brown badly scaled function 2 (1, 1)
Brown and Dennis function 4 (25, 5,−5, 1)
Gulf research and development function 3 (5, 2.5, 0.15)
Trigonometric function 10 (1, 1, ..., 1)
Extended Rosenbrock function 10 (−1.2, 1, ...,−1.2, 1)
Extended Powell singular function 12 (3,−1, 0, 1, ..., 3,−1, 0, 1)
Beale function 2 (1, 1)
Wood function 4 (−3,−1,−3,−1)
Chebyquad function 10 (5/11, 10/11, ..., 50/11)

Table 1: Test problems

the form f(x) =
∑m

i=1 f2
i (x). The test functions as well as the dimensions n

and the initial points x0 are given in Table 1.
The noisy measurements of the objective function are obtained with the

simulated normally distributed noise ε ∼ N (0, σ2) that is multiplied with the
exact functional value to obtain F (x) = f(x)(1+ε) at each point xk generated by
the algorithm. Six different noise levels σ = 0.01, 0.1, 0.5, 1, 5, 10 are considered.
We report the results for σ = 0.1, 1, 10 in this paper while all results are available
at http://people.dmi.uns.ac.rs/∼natasa/additional.pdf. The gradient
approximation with centered differences is implemented using the noisy function
values as follows. Several other possibilities for the gradient estimation could
be considered as well, see [10]. For a positive sequence {hk}, the gradient of f
at xk is approximated with ĝk, given by

[ĝk]j =
F (xk + hkej)− F (xk − hkej)

2hk
, j = 1, 2, ..., n, (18)

where ej is jth coordinate vector. The choice of hk is crucial for the approx-
imation of the gradient in presence of noise. If several of these values are too
small than the approximation of the gradient might be rather poor resulting in
very small steps in the line search and preventing the progress of the algorithm,
[12]. Assuming that the Hessian ∇2f is Lipschitz continuous with the constant
L, it can be shown that the estimation error is the following

‖ĝk −∇fk‖ ≤
(

L

2
h2

k +
∆
hk

)√
n, (19)

where ∆ is an upper bound for the noise, introduced in the assumption A2. Since
the right-hand side in (19) achieves minimum for hk = 3

√
∆/L, it is clear that

very small hk is not a good choice in noisy environments. We have established
empirically that the choice hk = 3σ, where σ is the noise level, is appropriate
for the test collection we considered.
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Three different choices of the search direction dk in Step 1 of Model algorithm
are tested:

(SGR) The spectral gradient search direction at each iteration is defined as

dk = −ĝk/σk,

where 0 < σmin < σk < σmax < ∞ is the spectral coefficient obtained
recursively by

σk+1 = max
{

σmin, min
{

σmax,
(ĝk+1 − ĝk)T (xk+1 − xk)

‖xk+1 − xk‖2
}}

(20)

for k = 0, 1, . . . with σ0 = 1, σmin = 10−10, σmax = 1010. See [2, 21] for
spectral gradient noise-free methods.

(BFGS) The BFGS search direction that we use is

dk = −Hkĝk,

where the inverse Hessian approximation is updated by

Hk+1 =
(
I − ρskyT

k

)
Hk

(
I − ρyksT

k

)
+ ρsksT

k (21)

for all k = 0, 1, . . . , with H0 = I, sk = xk+1 − xk, yk = ĝk+1 − ĝk and
ρ = 1/(yT

k sk). The initial approximation H0 is rescaled before the update
in the first iteration to:

H0 ← yT
k sk

yT
k yk

I.

The rescaling makes H0 similar to
(∇2F (x0)

)−1
, see [20]. If the positive

curvature condition yT
k sk > 0 is not satisfied, we set Hk+1 = Hk.

(SR1) The SR1 search direction is given by

dk = −Hkĝk,

where Hk is updated by

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)T

(sk −Hkyk)T yk
(22)

for all k = 0, 1, . . . , with the same definitions of H0, sk and yk as in the
BFGS implementation above. If the stability condition |(sk−Hkyk)T yk| ≥
ρ‖yk‖‖sk −Hkyk‖ is not satisfied for ρ = 10−8 we set Hk+1 = Hk.

The term F k in Model algorithm is calculated by (6) for M = 1 and M = 10
and by (7) with rk = 0.85 resulting in three different nonmonotone line-search
rules LS2, LS3 and LS4. They are compared with the Armijo rule stated for
the noisy functional values and obtained for M = 1 and ηk = 0, denoted here
as LS1.

(LS1) The monotone line-search defined by

F (xk + αkdk) ≤ F (xk)− α2
kβk.
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(LS2) The nonmonotone line-search defined by

F (xk + αkdk) ≤ F (xk) + ηk − α2
kβk.

(LS3) The line-search rule

F (xk + αkdk) ≤ F k + ηk − α2
kβk,

where F k is computed by (6) with M = 10.

(LS4) The line-search rule

F (xk + αkdk) ≤ F k + ηk − α2
kβk,

where F k is computed by (7) with rk = 0.85.

The specified choices of the search directions and line-search rules give 12
different methods that are tested.
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Figure 1: The performance profiles for different directions and σ = 0.1

The initial step length tested in Step 3 of Model algorithm is α = 1. If the
line search rule (5) is not satisfied then a smaller step is computed using the
safeguarded quadratic interpolation, [7]. For the sequences ηk and βk defined
by (8) and (9), we set

ηk = |F (x0)|/k1.1 and βk ≡ 1.

The algorithm stops when the criterium

|F (xk)| < (1 + 2σ) · |F (x0)| · 10−3 (23)
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Figure 2: The performance profiles for different line search rules and σ = 0.1

is satisfied, where σ is the noise level. Alternatively, the algorithm terminates
when the maximum number of 400 · n function evaluations is exceeded.

For each problem 50 independent runs are conducted. We considered a test
run successful if the stopping criterium (23) is satisfied before exceeding the
maximal number of function evaluations.

LS2 LS3 LS4

σ = 0.1

SGR 0.296 0.340 0.369
BFGS 0.312 0.383 0.402
SR1 0.281 0.334 0.354

σ = 1

SGR 0.204 0.331 0.297
BFGS 0.164 0.391 0.404
SR1 0.187 0.345 0.268

σ = 10

SGR 0.155 0.350 0.282
BFGS 0.069 0.408 0.377
SR1 0.108 0.361 0.305

Table 2: Nonmonotonicity index for different noise levels

To compare the performance of methods we present the performance profiles
defined in [9]. The measure for the performance profile is defined as the number
of function evaluations as common for noisy problems. More precisely, let us
denote by Nij the number of successful runs out of 50 for the method i solving
the problem j and let ϕij be the average number of function evaluations needed
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Figure 3: The performance profiles for different directions and σ = 1

for the method i to solve the problem j, in the successful runs. Clearly the
smaller ϕij is the method i is more efficient. However in noisy environment
one is also interested in the variation of ϕij as it shows, roughly speaking, the
robustness of the method. Thus we take the linear combination of ϕij and the
corresponding standard deviation σ(ϕ)ij for the performance measure i.e. the
performance measure is

πij = ϕij + σ(ϕ)ij .

Figures 1- 6 show the performance profiles for problems given in Table 1, that
are solved at least by one of the methods presented on the graph. The number of
solved problems by the methods presented on the performance profile graph are
reported for each of the graphs. Besides the graphs presented here a number of
additional indicators is available at http://people.dmi.uns.ac.rs/∼natasa/
additional.pdf. The graph below are made for two different comparisons -
the comparison of different search directions for all four line search rules and
the comparison of line search rules for each of the considered directions.

Starting from Figure 1, the set of problems that are solved in at least one run
by the SGR and SR1 methods is 12 while the BFGS methods solved 14 of the
considered 18 problems. As expected the nonmonotone line search rules clearly
outperform the monotone Armijo rule with noisy values for all three directions.
The performance profile presented at Figure 2 compare each of the rules for all
three directions. The monotone LS1 solved 13 problems while the remaining
3 methods solved 14 problems out of the test collection. For this noise level
(σ = 0.1) the BFGS direction seems to be superior to both SGR and SR1.

Increasing the noise to σ = 1 we obtain the graphs shown at Figure 3 and
Figure 4. Again the number of solved problems differs, ranging from 11 solved
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Figure 4: The performance profiles for different line search rules and σ = 1

by the SGR methods, 15 solved by the SR1 methods and 17 solved by the
BFGS methods. Although the influence of the line search choice is less clear
than for σ = 0.1, it is again evident that the nonmonotone rules perform better
than the monotone one. Looking at Figure 4, one can clearly notice that the
SGR direction perform rather poorly with LS1 which is consistent with the
results obtained in the classical case without noise, [21] as SGR is known for
its nonmonotone behavior and imposing the monotonicity request destroys its
main advantages. This property is persistent in the noisy environment as well.
For this level of noise the BFGS direction again appears to be the most suitable
one.

Finally, Figure 5 and 6 show the performance profiles for a large level of noise
generated with σ = 10. The existing difference in the number of solved problems,
ranging from 5 for the SGR methods, 8 for the SR1 methods and 17 for the
BFGS methods again favors BFGS methods. The difference in line search rules
is less evident for this direction than it is for the other two, with SGR strongly
preferring nonmonotone rules and SR1 mildly preferring the same. Nevertheless
the graphs at Figure 5b again favor the use of nonmonotone rules even for the
BFGS direction. The graphs presented at Figure 6 contain the performance
profiles for all four line search rules and 17 problems. An interesting point we
have noticed is that SGR might be the worst direction for this performance
measure but if it is converging than the number of function evaluations needed
for convergence is significantly smaller than the number of function evaluations
needed by the other two directions. The lack of success in many runs is somehow
contrary to its behavior in noise-free optimization, where it tends to be very
competitive, see for example [5] and [6]. Our conjecture is that there might be
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Figure 5: The performance profiles for different directions and σ = 10

a need to adjust the spectral coefficient to the noisy environment and future
research is planned in this direction.

One of the conclusions we can drawn from this set collection is that non-
monotonicity improves the behavior of all tested directions. Thus we report
the nonmonotonicity index in Table 2 as a measure of the influence of non-
monotonicity, [13]. The index is defined as the average ratio of the number of
iterations with the step size that would not be accepted if the line search was
LS1 and the total number of iterations. The average calculated over all success-
ful runs in all tested problems. The values of this index clearly show that the
number of accepted step lengths is significant for all three nonmonotone line
search rules.
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