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Abstract

One class of the lately developed methods for solving optimization
problems are filter methods. In this paper we attached a multidimen-
sional filter to the Gauss-Newton-based BFGS method given by Li and
Fukushima [SIAM J.Numer.Anal., Vol.37, No.1 (1999), pp.152-172] in
order to reduce the number of backtracking steps. The proposed filter
method for unconstrained minimization problems converges globally un-
der the standard assumptions. It can also be successfully used in solving
systems of symmetric nonlinear equations. Numerical results show rea-
sonably good performance of the proposed algorithm.
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1 Introduction

Consider the following problem

min
x∈Rn

f(x), (1)

where f : Rn → R is two times continuously differentiable function.
There are various methods for solving the unconstrained minimization prob-

lem (1), see [8, 17]. One of the most exploited are quasi-Newton methods, firstly
proposed by Broyden [3] in 1965. They are defined by the iterative formula

xk+1 = xk + λkpk,
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where λk > 0 is the step length that is updated by line search and backtracking
procedure and pk = −B−1

k ∇f(xk) is the search quasi-Newton direction, where
∇f(x) is the gradient mapping of f(x). In quasi-Newton methods Bk is an
approximation of the Hessian ∇2f(xk) and it is updated at every iteration with
some low-rank matrix. One of the well known update formula is the BFGS
formula given by

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

,

where sk = xk+1−xk and yk = ∇f(xk+1)−∇f(xk). The BFGS update formula
possesses nice properties that are very useful for establishing convergence results,
see [4]. For better understanding of quasi-Newton methods, we refer to [2, 7, 16].

In [15], Li and Fukushima proposed a new modified BFGS method called
Gauss-Newton-based BFGS method for symmetric nonlinear equations

g(x) = 0, (2)

where the mapping g : Rn → Rn is differentiable and the Jacobian ∇g(x) is
symmetric for all x ∈ Rn. By introducing a new line search technique and
modifying the BFGS update formula, under suitable conditions, they proved
global and superlinear convergence of their method.

If we denote by g : Rn → Rn, the gradient mapping of the function f(x)
from (1), then g(x) is differentiable and the Hessian ∇2f(x) is symmetric for
all x ∈ Rn. The first order optimality conditions for (1) are given by (2) and
therefore the method from [15] is applicable for solving (1).

Like many other quasi-Newton methods the Gauss-Newton-based BFGS
method [15] uses a backtracking procedure in determining the step length. A
line search procedure can result in a very small step lengths. In order to avoid
these small steps as well as to reduce the number of backtracking procedures,
in this paper we associate a filter to the Gauss-Newton-based BFGS method.

Filter methods, one of the latest developments in global optimization algo-
rithms, were firstly proposed by Fletcher in 1996, [9]. First filter methods are
a kind of alternative to penalty functions used in constrained nonlinear pro-
gramming optimization algorithms, see [5, 11, 14, 18]. In these methods, filter
functions penalize the constraints violations less restrictively then penalty func-
tions. The main purpose of filters is allowing the full Newton step to be taken
more often and thus inducing global convergence of the method. Filter methods
are extended to solving nonlinear equations, see [6, 12], unconstrained optimiza-
tion, [13]. For detailed reading about filter methods developments we refer to
[10].

In this paper we add a filter to the Gauss-Newton-based BFGS method
[15] in order to solve the unconstrained minimization problem (1). Our filter
method has global convergence property and in some test problems shows better
performance then the method without filter. The filter in our paper is inspired
by the multidimensional filter in [6, 12] although there are minor differences.

In Section 2 we present the Gauss-Newton-based BFGS method [15], in-
troduce the multidimensional filter and state our Gauss-Newton-based BFGS

2



method with filter. In Section 3 we proved the global convergence of our method
under the set of standard assumptions. Some numerical results are reported in
Section 4.

2 Algorithm

Let us first briefly explain the main properties of the Gauss-Newton-based BFGS
method [15] for solving problem (1). That method will be used in combination
with a filter in this paper.

Given the gradient mapping g and current iteration xk = xk−1 + λk−1pk−1,
the search direction pk is obtained from the following linear system

Bkp + λ−1
k−1(g(xk + λk−1g(xk))− g(xk)) = 0. (3)

The line search is applied if the inequality

||g(xk + λkpk)|| ≤ ρ||g(xk)|| (4)

is not satisfied for some fixed ρ ∈ [0, 1). The line search rule is governed by a
positive sequence {εk} satisfying

∑
k εk < ∞. For the chosen sequence {εk} and

fixed parameters σ1, σ2 > 0 we take xk+1 = xk + λkpk as a new iterate if

||g(xk +λkpk)||2− ||g(xk)||2 ≤ −σ1||λkg(xk)||2−σ2||λkpk||2 + εk||g(xk)||2. (5)

Otherwise the step size is decreased, λk := rλk, 0 < r < 1 until (5) is satisfied.
The acceptance rule (5) starts with λk = 1 and is well defined since the inequality
has to be satisfied for λk > 0 small enough due to the presence of εk > 0 at the
right-hand side of (5). After determining xk+1 the new matrix Bk+1 is obtained
by (6), where

sk = xk+1 − xk = λkpk,

δk = g(xk+1)− g(xk),

yk = g(xk + δk)− g(xk),

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

. (6)

The usual safe guard condition yT
k sk > 0 is applied i.e. if yT

k sk ≤ 0 then
Bk+1 = Bk.

In computational implementation of the algorithm presented in Section 4
we used BFGS approximation of the inverse Jacobian, Hk = B−1

k and therefore
determine the search direction as

pk = −Hkλ−1
k−1(g(xk + λk−1g(xk))− g(xk)) (7)

with

Hk+1 = (I − skyT
k

yT
k sk

)Hk(I − yksT
k

yT
k sk

) +
sksT

k

yT
k sk

. (8)
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The Gauss-Newton based BFGS is globally convergent under the set of stan-
dard assumptions, [15]. The same set of assumption is used in this paper and
is listed as A1-A3 in Section 3.

Let us now introduce the multidimensional filter we will use in combination
with the Gauss-Newton based BFGS from [15]. Our filter is defined similarly as
in [6, 12]. The equations (2) are partitioned into m sets {gi(x)}i∈Ij , j = 1, ..., m,
with the property {1, ..., n} = I1 ∪ ... ∪ Im, Ij ∩ Ik = ∅, j 6= k and the filter
functions are defined as

φj(x)
def
= ||gIj

(x)|| for j = 1, ..., m (9)

where ||·|| is the Euclidean norm and gIj
is the vector whose components are the

components of g indexed by Ij . With this notation x∗ satisfies the optimality
conditions of (1) if and only if φj(x∗) = 0 for all j = 1, ...,m. The following
abbreviations will be used

φ(x)
def
= (φ1(x), ..., φm(x))T , φk

def
= φ(xk) and φj,k

def
= φj(xk).

A filter is a list F of m-tuples of the form (φ1,k(x), φ2,k(x), ..., φm,k(x)) such
that

φj,k < φj,l for at least one j ∈ {1, ..., m} and for all k 6= l.

To understand the meaning and usage of the filter a concept of domination
is introduced. A point x1 dominates a point x2 whenever

φj(x1) ≤ φj(x2) for all j = 1, ..., m.

Therefore we say that the filter keeps all iterates that are not dominated by
other iterates in the filter. In this work, we use a filter to construct an additional
acceptability condition for a new trial iterate x+

k = xk + sk. This condition is
slightly different than the one in [12]. The first difference is the function δ1 in
(10), where we use max function while in [12] min is considered. The procedure
for removing points from the filter is also different. The reason for these changes
is empirical since we realized that the algorithm is more efficient with the rule
proposed in this paper.

We say that a new trial point x+
k is acceptable for the filter F if

∀φl ∈ F ∃j ∈ {1, ...,m} φj(x+
k ) < φj,l − γφδ1(||φl||, ||φ+

k ||), (10)

where γφ ∈ (0, 1) is a small positive constant and

δ1(||φl||, ||φ+
k ||) = max{||φl||, ||φ+

k ||}.

When a trial point is acceptable for the filter, we add the trial point to the
filter immediately (again different from [12]). In other words add the m-tuple
φ+

k = φ(x+
k ) = (φ1(x+

k ), ..., φm(x+
k ))T to the filter F .

4



When we add a new trial point x+
k to the filter, we remove all points from

the filter that are dominated by the trial point x+
k , which means that we remove

m-tuples (φ1,ki
, ..., φm,ki

)T ∈ F \ {φ+
k } from the filter if

φj(x+
k ) ≤ φj,ki j = 1, ..., m.

Every trial point which is acceptable for the filter is taken as a new iterate.
Our implementation of the multidimensional filter in Gauss-Newton based

BFGS with filter method is done in such a way that the backtracking λk := rλk

is enforced only if a trial point x+
k is not acceptable to the filter. The proposed

filter algorithm gives its best performance in the case when m = n and Ij = {j}
- similarly as it is discussed in [10]). In this case we will have φj(x) = |gj(x)|,
φ(x) = g(x), φk = g(xk) and φj,k = |gj(xk)|.

Now we are ready to state the new algorithm.
ALGORITHM GNbBFGSf. Gauss-Newton-based BFGS method with

filter

Step 0. Choose an initial point x0 ∈ Rn, an initial symmetric positive definite
matrix B0 ∈ Rn×n, a positive sequence {εk} satisfying

∑∞
k=0 εk < ∞ ,

and constants r, ρ, γφ ∈ (0, 1), σ1, σ2 > 0, λ−1 > 0. Let k := 0.

Step 1. If g(xk) = 0 then Stop. Otherwise, solve the following linear equation
to get pk

Bkp + λ−1
k−1(g(xk + λk−1g(xk))− g(xk)) = 0. (11)

Take λk = 1 and go to Step 2.

Step 2. Let the trial point be x+
k = xk + λkpk. If

||g(x+
k )||2 − ||g(xk)||2 ≤ −σ1||λkg(xk)||2 − σ2||λkpk||2 + εk||g(xk)||2 (12)

then go to Step 3, else if x+
k is acceptable to the filter then add x+

k to the
filter, remove all points from the filter that are dominated by x+

k and go
to Step 3. Otherwise, put λk := rλk and repeat Step 2.

Step 3. Take the next iterate xk+1 = x+
k .

Step 4. Put
sk = xk+1 − xk = λkpk,

δk = g(xk+1)− g(xk),

yk = g(xk + δk)− g(xk).

If yT
k sk ≤ 0, then Bk+1 = Bk and go to Step 5. Otherwise, update Bk

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

(13)

and go to Step 5.
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Step 5. Let k := k + 1. Go to Step 1.

At the beginning of Algorithm GNbBFGSf, the filter is initialized to be
empty F = ∅ or to be F = {φ(x) : φj(x) ≥ φj max, j = 1, ...,m} for any
φj max > φj(x0), j = 1, ..., m (similarly as in [18]). In practical implementations
of this method, Section 4, the filter is initialized to be empty F = ∅ or to be
F = {φ(x0)}.

One should notice that if there are finitely many values of φk that are added
to the filter, then for all k large enough (for all k ≥ k0 where φk0 is the last
m-tuple added to the filter), Algorithm GNbBFGSf is the same as the one
considered in [15].

3 Convergence result

In this section, we are going to establish the global convergence of Algorithm
GNbBFGSf. Some convergence results from [15] will be used. To do that we
need the following assumption for the values φk that are added to the filter by
Algorithm GNbBFGSf.

Assumption.

A0 There exists a constant C > 0 such that for all values φk that are added
to the filter by Algorithm GNbBFGSf the following stands

||φk|| ≤ C.

Let Ω be the level set defined by

Ω = {x : ||g(x)|| ≤ e
ε
2 max{C, ||g(x0)||}}, (14)

where ε is a positive constant such that
∞∑

k=0

εk < ε. (15)

Than we have the following lemma.

Lemma 3.1 Let the assumption A0 holds and let {xk} be generated by Algo-
rithm GNbBFGSf. Then {xk} ⊂ Ω.

Proof. If for the iterate xk there are no values φk′ , k
′ ≤ k before it that are

added to the filter, then in [15] it is shown that

||g(xk)|| ≤ e
ε
2 ||g(x0)||. (16)

The last inequality (16) is obtained using the following conclusion, that is: for
each two consecutive iterates xk−1 and xk which were not added to the filter
the inequality (12) holds which means that

||g(xk)|| ≤ (1 + εk−1)
1
2 ||g(xk−1)||, (17)
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where ε is a constant satisfying (15).
Now let xi(k) be the last iterative point before xk such that φi(k) was added

to the filter. Then using (17) we have

||g(xk)|| ≤ (1 + εk−1)
1
2 ||g(xk−1)||

≤ (1 + εk−1)
1
2 (1 + εk−2)

1
2 ||g(xk−2)||

...

≤
( k−1∏

j=i(k)

(1 + εj)
1
2

)
||g(xi(k))||

≤ ||g(xi(k))||
( 1

k − i(k)

k−1∑

j=i(k)

(1 + εj)
) k−i(k)

2

= ||g(xi(k))||
(
1 +

1
k − i(k)

k−1∑

j=i(k)

εj

) k−i(k)
2

(18)

≤ ||g(xi(k))||
(
1 +

ε

k − i(k)

) k−i(k)
2

≤ e
ε
2 ||g(xi(k))||

≤ e
ε
2 C, (19)

where ε is a constant satisfying (15) and C > 0 is a constant from assumption
A0. From (16) and (19) it implies that {xk} ⊂ Ω. ¤

The following set of assumption is also necessary for the global convergence
analysis of Algorithm GNbBFGSf.

Assumptions.

A1 g is continuously differentiable on an open set Ω1 containing Ω.

A2 ∇g is symmetric and bounded on Ω1 i.e. ∇g(x)T = ∇g(x) for every x ∈ Ω1

and there exists a positive constant M such that

||∇g(x)|| ≤ M ∀x ∈ Ω1.

A3 ∇g is uniformly nonsingular on Ω1 i.e. there is a constant m > 0 such
that

m||p|| ≤ ||∇g(x)p|| ∀x ∈ Ω1, p ∈ Rn.

As the mapping g is the gradient of f and f is two times continuously dif-
ferentiable, A1 and A2 are clearly satisfied while A3 is the standard assumption
for global convergence of optimization algorithms.

In order to prove the global convergence of Algorithm GNbBFGSf we dis-
tinguish two cases. The first one is when there are finitely many values of φk

that are added to the filter by Algorithm GNbBFGSf, and for that case our
algorithm is the same as the Gauss-Newton based BFGS from [15]. Therefore
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we will not consider that case in this paper. The second case occurs when
there are infinitely many values of φk that are added to the filter by Algorithm
GNbBFGSf. For that case we state the following lemma.

Lemma 3.2 Let the assumptions A0-A3 hold and assume that infinitely many
values of φk are added to the filter by Algorithm GNbBFGSf. Then

lim
k→∞

||g(xk)|| = 0. (20)

Proof. The first part of the proof is based on [6, 12]. Let {ki} index the
subsequence of iterations at which φki

= φ+
ki−1 is added to the filter. Now

assume that there exists a subsequence {kj} ⊆ {ki} such that

||φkj
|| ≥ ε1 (21)

fore some constant ε1 > 0. Since by the assumption we know that {||φkj ||} is
bounded, there exists a subsequence {kl} ⊆ {kj} such that

lim
l→∞

φkl
= φ∞ with ||φ∞|| ≥ ε1.

Moreover, by definition of {kl}, φkl
is acceptable for every l, which implies in

particular that for each l there exists an index j ∈ {1, ..., m} such that

φj,kl
− φj,kl−1 < −γφ||φkl

|| (22)

as we will show now. Let us consider the following two cases.

(i) If φkl−1 is still in the filter, then there exists an index j ∈ {1, ...,m} such
that

φj,kl
− φj,kl−1 < −γφδ1(||φkl

||, ||φkl−1 ||) ≤ −γφ||φkl
||.

(ii) If φkl−1 is removed by one trial point, say φkl′ with kl−1 < kl′ < kl, and
φkl′ is still in the filter, then there exists a j ∈ {1, ..., m} such that

φj,kl
− φj,kl′ < −γφδ1(||φkl

||, ||φkl′ ||) ≤ −γφ||φkl
||

and
φj,kl′ ≤ φj,kl−1 ,

so (22) holds in this case too.

From (22), (21) and {kl} ⊆ {kj}, we deduce that

φj,kl
− φj,kl−1 < −γφε1,

but the left-hand side of it tends to zero when l tends to infinity. This leads us
to the contradiction. Hence

lim
i→∞

||φki || = 0. (23)
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Consider now any l /∈ {ki} and let ki(l) be the last iteration before l such that
φki(l) was added to the filter. Like (18) was derived, the following inequality can
be derived too.

||g(xl)|| ≤ ||g(xki(l))||
(
1 +

1
l − ki(l)

l−1∑

j=ki(l)

εj

) l−ki(l)
2

. (24)

By the definition of {εk}, we know that

lim
l→∞

l−1∑

j=ki(l)

εj = 0,

and consequently

lim
l→∞

(1 +
1

l − ki(l)

l−1∑

j=ki(l)

εj

) l−ki(l)
2

= 1. (25)

From previously proved (23) we have that

lim
l→∞

||φki(l) || = 0. (26)

The equalities (25) and (26) imply that when l tends to infinity then the right-
hand side of (24) tends to zero and therefore

lim
l→∞

||g(xl)|| = 0,

which completes the proof. ¤
Lemma 3.2 and global convergence of Gauss-Newton based BFGS algorithm

from [15] clearly imply the next global convergence theorem.

Theorem 3.3 Let the assumptions A0-A3 hold. Then the sequence {xk} gen-
erated by Algorithm GNbBFGSf converges to the unique solution x∗ of problem
(2).

Proof. If there are finitely many values of φk that are added to the filter by
Algorithm GNbBFGSf, then Algorithm GNbBFGSf acts same as Gauss-Newton
based BFGS algorithm from [15] after some finite number of iterative steps, and
in [15] it is proved that under assumptions A1-A3 {||g(xk)||} converges and

lim inf
k→∞

||g(xk)|| = 0. (27)

The case when infinitely many values of φk are added to the filter by Algorithm
GNbBFGSf is considered in Lemma 3.2.

So, from (27) and (20), we can say that every accumulation point of {xk}
is a solution of (2). Since ∇g is uniformly nonsingular on Ω1, (2) has only one
solution. Since Ω is bounded, {xk} ⊂ Ω has at least one accumulation point.
Therefore {xk} converges to the unique solution of (2). ¤

9



4 Numerical results

In this section we report results of some numerical experiments with the pro-
posed method and give comparison with the method considered in [15]. Prob-
lems 1, 2 and 3 are of fixed dimension, while problems 4 and 5 have can have
various dimensions.

Problem 1. [6]
min
x∈R2

f(x),

where

f(x) :=
1
2
((x2

1 − x2 − 1)2 + ((x1 − 2)2 + (x2 − 0.5)2 − 1)2).

Problem 2. [6]
min
x∈R3

f(x)

where

f(x) =
1
2
((12x1 − x2

2 − 4x3 − 7)2 + (x2
1 + 10x2 − x3 − 11)2 + (x2

2 + 10x3 − 8)2).

Problem 3. [1] Wood’s Function (WF)

min
x∈R4

f(x)

where

f(x) = 100(x2 − x2
1)

2 + (1− x1)2 + 90(x4 − x2
3)

2 + (1− x3)2+
+10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)}.

Problem 4. [1] Cosine Mixture Problem (CM)

min
x∈Rn

f(x)

where

f(x) =
n∑

i=1

x2
i − 0.1

n∑

i=1

cos(5πxi).

Problem 5. [1] Rosenbrock Problem (RB)

min
x∈Rn

f(x)

where

f(x) =
n−1∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2).

Experiments were done skipping Step 2 in the Gauss-Newton based BFGS
method from [15] i.e. skipping the monotone decrease acceptance condition (4)
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and with updating the approximation the inverse Jacobian Hk. The parameters
were chosen to be r = 0.1, σ1 = σ2 = 10−5, λ−1 = 0.01, εk = k−2 and
γφ = 0.5, and the initial matrix H0 was set to be the identity matrix. Test were
performed in Matlab. The iteration procedure was stopped when the condition
||g(xk)|| ≤ eps1/3 with eps = 2−52 was satisfied.

Three methods were tested. In Table 1 and Table 2 the following abbre-
viations are used: Alg.1 is the Gauss-Newton-based BFGS method from [15],
Alg.2(I) is the Gauss-Newton-based BFGS method with filter described in Algo-
rithm GNbBFGSf with the initialization of the filter F = {φ(x0)} and Alg.2(II)
is the Gauss-Newton-based BFGS method with filter described in Algorithm
GNbBFGSf and the initialization F = ∅.

Table 1 shows the initial point x0, number of iteration (iter), number of
calculations of the function g (gcalc) and number of steps where the filter was
used (ftr) needed to solve above problems. Table 2 shows the values of the last
iterative points.

The overall performance of all algorithms was good. It is clear that compar-
ison of Alg.1 and Alg. 2 depends on an initial point. From Table 1 we can see
that in some cases Alg.1 still has better performance: Problem 1 - the second
initial point, Problem 2 - the first initial point, Problem 3 - the second initial
point, Problem 4 - the second initial point, Problem 5 - the first and third initial
point. But in the remaining cases one of the Alg. 2 or both of them are superior
to Alg. 1. This shows that the usage of filter is justified and that it can reduce
the number of iterations and consequently the number of calculations of the
function g. In some cases the decrease was quite significant, Problem 3 - the
first initial point, Problem 4 - first initial point. From the same Table 1 we can
also see that the performance of the Alg.2 depends on the initialization of the
filter and so far we could not conclude which initialization is better. In all cases
except Problem 1 the global minimizers are reached. For Problem 1 with both
initial points, Alg. 1 does not converge to the global minimizer while Alg.2(I)
- the first initial point and Alg.2 (II) - the first and second initial points reach
the global minimizer.
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Alg.1 Alg.2(I) Alg.2(II)

prb n x0 iter gcalc iter gcalc ftr iter gcalc ftr

1 2 (-1, 1) 45 173 33 119 1 41 164 2
(5, 5) 46 177 107 393 3 47 188 2

2 3 (0, 0, 0) 27 103 32 127 1 35 133 3
(-1, 1, 1) 45 184 32 119 2 32 119 2

3 4 (0.5, 0.5, 0.5, 0.5) 659 3126 335 1468 3 361 1640 2
(1.5, 0.5, 1.5, 0.5) 619 2661 852 3754 5 2123 10992 3

4 2 (1, 1) 104 738 98 650 2 52 299 2
(5, 5) 145 1010 336 2727 3 336 2727 3

4 4 (1, 1, 1, 1) 104 738 104 738 0 42 245 1
(5, 5, 5, 5) 188 1378 188 1378 0 22 109 1

5 2 (0.5, 0.5) 239 988 511 2091 5 511 2091 5
(1.2, 1.2) 242 1141 178 755 3 253 1129 4

5 4 (0.5, 0.5, 0.5, 0.5) 266 1065 1712 7713 2 1712 7713 2
(1.2, 1.2, 1.2, 1.2) 288 1211 265 1107 3 285 1246 3

Table 1. Comparison of GNbBFGS methods
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prb n x0 Alg.1 Alg.2(I) Alg.2(II)

1 2 (-1, 1) x(1) 1.257618339 1.546342884 1.067346967
x(2) 0.795151479 1.391176313 0.139230758

(5, 5) x(1) 1.257619385 1.25761907 1.067346082
x(2) 0.795153222 0.795152509 0.139227653

2 3 (0, 0, 0) x(1) 0.908926356 0.908926369 0.908926367
x(2) 1.085600025 1.085600012 1.085600018
x(3) 0.682147237 0.68214726 0.682147259

(-1, 1, 1) x(1) 0.908926364 0.908926365 0.908926365
x(2) 1.085600016 1.085600015 1.085600015
x(3) 0.682147253 0.682147254 0.682147254

3 4 (0.5, 0.5, 0.5, 0.5) x(1) 1.000082461 1.000051394 0.999999082
x(2) 1.000161982 1.000102612 0.999998153
x(3) 0.999929022 0.999949906 1.00000093
x(4) 0.999855112 0.999899011 1.000001867

(1.5, 0.5, 1.5, 0.5) x(1) 1.000000103 0.999998594 1.00000006
x(2) 1.000000204 0.999997189 1.00000012
x(3) 0.999999899 1.000001296 0.999999941
x(4) 0.999999796 1.000002592 0.999999881

4 2 (1, 1) x(1) 3.40169E-09 9.37398E-09 -2.33E-12
x(2) 3.40169E-09 9.37398E-09 -2.563E-12

(5, 5) x(1) -1.9795E-11 -5.99218E-09 -5.99218E-09
x(2) -1.5949E-11 2.15731E-07 2.15731E-07

4 4 (1, 1, 1, 1) x(1) 3.40169E-09 3.40169E-09 1.3359E-07
x(2) 3.40169E-09 3.40169E-09 1.3359E-07
x(3) 3.40169E-09 3.40169E-09 1.3359E-07
x(4) 3.40169E-09 3.40169E-09 1.3359E-07

(5, 5, 5, 5) x(1) 2.47E-13 2.47E-13 -4.42473E-07
x(2) 2.47E-13 2.47E-13 -4.42473E-07
x(3) 2.47E-13 2.47E-13 -4.42473E-07
x(4) 2.47E-13 2.47E-13 -4.42473E-07

5 2 (0.5, 0.5) x(1) 0.9999993 0.999996589 0.999996589
x(2) 0.999998595 0.999993156 0.999993156

(1.2, 1.2) x(1) 1.000001017 0.999997873 0.999999952
x(2) 1.000002031 0.999995733 0.999999903

5 4 (0.5, 0.5, 0.5, 0.5) x(1) 1.000000433 1.000000062 1.000000062
x(2) 1.000000863 1.000000124 1.000000124
x(3) 1.00000172 1.000000249 1.000000249
x(4) 1.000003444 1.000000498 1.000000498

(1.2, 1.2, 1.2, 1.2) x(1) 0.999999591 1.000000078 1.000000008
x(2) 0.999999187 1.000000154 1.000000007
x(3) 0.99999837 1.000000306 1.000000003
x(4) 0.999996727 1.000000614 1.000000003

Table 2. Final points reached by the tested algorithms
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