
Descent direction method with line search for
unconstrained optimization in noisy

environment

Nataša Krejić∗ Zorana Lužanin∗ Zoran Ovcin †

Irena Stojkovska‡

December 10, 2014

Abstract

A two-phase descent direction method for unconstrained stochastic op-
timization problem is proposed. A line search method with an arbitrary
descent direction is used to determine the step sizes during the initial
phase, and the second phase performs the stochastic approximation (SA)
step sizes. The almost sure convergence of the proposed method is estab-
lished, under standard assumption for descent direction and SA methods.
The algorithm used for practical implementation combines a line search
quasi-Newton method, in particular the BFGS and SR1 methods, with the
SA iterations. Numerical results show good performance of the proposed
method for different noise levels.

Key words. stochastic optimization, stochastic approximation, noisy
function, descent direction method, line-search, quasi-Newton methods,
unconstrained minimization

AMS subject classification. 90C15, 62L20, 60H40, 65K05, 90C53

1 Introduction
The main objective of this paper is to propose and discuss a new method based
on combination of ideas from deterministic and stochastic optimization for the
following unconstrained optimization problem

min
x∈Rn

f(x), (1)

∗Department of Mathematics and Informatics, Faculty of Science, University of Novi
Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: {natasak@uns.ac.rs,
zorana@dmi.uns.ac.rs}
†Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000

Novi Sad, Serbia, e-mail: zovcin@uns.ac.rs
‡Department of Mathematics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and

Methodius University, Arhimedova 3, 1000 Skopje, Macedonia, e-mail: irenatra@pmf.ukim.mk

1



where f : D ⊂ Rn → R is a continuously differentiable, possibly nonconvex
function bounded below on D. Throughout the paper we assume that only
noisy measurements of the objective function f(x) and gradient ∇f(x) = g(x)
are available at x ∈ D. For x ∈ D, let ξ(x) and ε(x) be random variable and
random vector respectively defined on a probability space (Ω,F , P ). Then, the
noisy functional and gradient values at each x ∈ D are

F (x) = f(x) + ξ(x) and G(x) = g(x) + ε(x), (2)

where ξ and ε represent the random noise terms. Note that the noise terms
show dependence on x as this property is relevant for many applications [24],
[27],[28]. We assume that there is a unique x∗ that solves (1) and then the
first order condition states that x∗ satisfies

g(x∗) = 0. (3)

Typical examples of such problems arise in many application areas, as noise
is present whenever physical system measurements or computer simulations are
used for approximation. The presence of noise might mislead an optimization
algorithm throughout the entire process and result in false optimal solutions.
Some of the results regarding optimization problems in noisy environment are
given in [13, 22].

One of the well known methods for solving problem (1) in presence of noise
is stochastic approximation (SA) by Robbins and Monro (1951) [20]. The first
results for this method dealt with the asymptotic analysis and the conditions
have been obtained under which the convergence in mean square is guaranteed.
Later, an almost sure convergence is established. However, SA is rather slow in
practice and that motivated further research in order to accelerate the conver-
gence in practical implementations, such as accelerated SA procedures presented
in [9, 14, 25]. In the absence of noise the SA reduces to the well know descent
direction method from deterministic optimization. Therefore, one natural idea
is to mimic the line-search procedure that leads to linear convergence in deter-
ministic case. This idea is developed in [29, 30]. But the convergence conditions
require increase in the sample size used for approximation of the objective func-
tion and the gradient throughout the iterative procedure, thus resulting in an
expensive method. Other ideas coming from deterministic optimization are con-
sidered in the literature. For example, Spall developed a method which uses a
second order approximation of the Hessian matrix obtained by finite differences
and thus generates a quasi-Newton sequence, [24]. Other modifications of the
SA regarding step size and/or search direction selection are given in [2], [32],
[33], [34]. A direct line search method based on probabilistic descent
is analyzed in [1]. An interesting attempt of the opposite kind, an
extension of stochastic based methods to deterministic problems, is
presented in [12] where the probabilistic methods are considered in
the trust region framework.

A successful combination of the SA and line-search gradient method is pro-
posed and analyzed in [15]. A two-phase method consisting of the negative

2



gradient line search procedure during the initial phase of the iterative proce-
dure and the SA steps afterwards, is proven to be almost surely convergent and
rather efficient. The key point is the choice of switching point from the initial
phase to the SA phase. The objective of the work presented in this paper is
to extend this approach to general descent direction methods and thus allow
the application of faster, second order methods while keeping the almost sure
convergence. The application of second order methods appears to be particu-
larly important within the framework of large scale problems arising in machine
learning where an SA quasi Newton approach is successfully applied, [3, 4, 5].
In the algorithm presented in this paper a line search is applied while we are
far away from a solution and hopefully the obtained reduction in gradient value
is a consequence of reduction in the exact gradient. Therefore it is reasonable
to expect that the method will generate large steps and make fast progress.
Once we approach some small neighborhood of a solution line-search step is not
good anymore since the noise is influencing functional and gradient values much
stronger. Therefore we switch to the safe but slow SA steps. Again, the main
issue is the switching point from line-search to SA. The almost sure convergence
of the proposed method will be established. The convergence conditions do not
require increase in the sample size, which is an important property in practical
implementation.

The paper is organized as follows. A brief overview of the SA and line search
descent direction methods is given in Section 2. The algorithm is presented in
Section 3. The convergence results presented in Section 4 consists of two parts.
First we prove that the SA methods defined by any descent direction in the sense
specified below is almost surely convergent. Then we prove that the switching
point between the SA and the line search method is well defined and that the
algorithm generates a sequence which is almost surely convergent. Section 5
contains numerical results that confirm the efficiency of the approach proposed
here. The issue of an appropriate implementation for quasi-Newton directions
in stochastic environment is also addressed.

2 Line-search versus SA in stochastic environ-
ment

The iterative sequence generated by SA (stochastic approximation) for solving
the problem (1) is defined by

xk+1 = xk − akGk, (4)

where Gk is an approximation of g(xk) = ∇f(xk), and ak > 0 are the gain
coefficients. This method is introduced by Robbins and Monro [20] and is known
as the Robbins-Monro Stochastic Approximation (RMSA).

The almost sure convergence of SA for strongly convex objective func-

3



tion can be proved if the gain coefficients ak satisfy

ak > 0,

∞∑
k=0

ak =∞,
∞∑
k=1

a2k <∞. (5)

The convergence in mean square is proved in [20], i.e. xk → x∗ in m.s., that is
E[‖xk − x∗‖2]→ 0 as k →∞. Other authors like Chen in [7] and Spall in [25]
proved the almost sure convergence i.e. xk → x∗ a.s.

Let {xk} be a sequence generated by an SA method (4)-(5). Denote by
Fk the σ-algebra generated by x0, x1, . . . , xk. The set of standard assumptions
under which SA is convergent consist of the following.

A1 For any ε > 0 there is βε > 0 such that

inf
||x−x∗||>ε

(x− x∗)T g(x) = βε > 0.

A2 The observation noise (εk(x),Fk+1) is a martingale difference sequence
with

E(εk(x)|Fk) = 0 and E||εk(x)||2 <∞ a.s for all k and x ∈ D.

A3 The gradient g and the conditional second moment of the observation
noise have the following upper bound

||g(x)||2 + E(||εk(x)||2|Fk) < c(1 + ||x− x∗||2) a.s. for all k and x ∈ D,

where c > 0 is a positive constant.

Assumption A1 represents the condition on the shape of g(x), A2 is the
standard mean-zero noise condition and A3 provides restrictions on the mag-
nitude of g(x), saying that ‖g(x)‖2 and the conditional second moment of the
observation noise can not grow faster then a quadratic function of x.

In [7] it is proved that under assumptions A1-A3 and condition (5) for the
gain sequence {ak}, the sequence {xk} generated by SA method (4) converges
a.s. to the solution x∗ of the nonlinear system

g(x) = 0 (6)

in noisy environment. Having in mind properties of the loss function f from the
problem (1), we can conclude that assumptions A1-A3 and condition (5) for the
gain sequence {ak}, provide a.s. convergence of the SA method to the solution
x∗ of the problem (1). Given that we are dealing with a method that
combines SA and line search several other assumptions will be intro-
duced later on. At this moment let us only briefly explain them. The
conditions on search direction dk determined by SA properties are
stated in the assumptions A4-A5. In fact in the descent SA method
A4-A5 are used instead of A1 as the true gradient g is unavailable.

4



The assumptions A4-A5 limit the influence of noise and connect the
descent direction with the noisy gradient. On the other hand line
search requires several common assumptions like the Lipschitz con-
tinuity of the gradient and certain relationship between the gradient
and the search direction, see A6, A8-A9. Finally, we are going to
assume that the observation noise is bounded, A7. Detailed assump-
tions are presented in Section 4.

For practical implementation of SA, choice of the gain coefficients ak plays
the main role. The most simple choice is ak = a/(k + 1), with a > 0. The
optimal choice in the sense of asymptotic convergence is

ak =
‖H(x∗)−1‖
k + 1

where H is the Hessian matrix of f, while the most practical choice is

ak =
a

(k + 1 +A)α
,

where a, α > 0 and A ≥ 0 are parameters. A detailed discussion of parameter
tuning is presented in [23, 24]. Non-asymptotic properties of SA method are the
main focus of interest in practical applications. Unfortunately the asymptoti-
cally optimal methods behave badly in finite time: the choice ak = a/(k+ 1) is
too "cautious" if the disturbance term is small with respect to the initial error
x0−x∗. Although reliable, the method is quite slow and therefore expensive for
practical purposes. These drawbacks prompted a number of modifications of SA
method. Several generalizations of the SA method are based on adaptive step
sizes that try to adjust the step size at each iteration to the progress achieved
in the previous iterations, see [9, 14, 33]. An important choice for the gain
sequence is a constant sequence. Although such sequences do not satisfy (5)
and almost sure convergence to solution can not be obtained, it can be shown
that a constant step size can conduct the iterations to a region that contains
the solution. This result initiated development of a cascading step-length SA
scheme in [31] where a fixed step size is used until some neighborhood of the
solution is reached.

Let us now briefly introduce the Armijo line search procedure that will be
incorporated into noisy environment. For details concerning line search methods
one can consult [18]. Given an objective function f and a descent direction
dk line search procedure determines the step length ak such that the Armijo
condition

f(xk + akdk) ≤ f(xk) + c1akg(xk)T dk, (7)

where c1 is a small positive constant, is satisfied. The implementation within
the framework we consider here includes the need to modify the rule according
to the fact that only the noisy values of the objective function and its gradient
are available.

5



3 Descent Stochastic Line Search Algorithm
The presence of noise makes the definition of descent direction ambiguous, given
that only noisy observations of the gradient are available and the condition
g(xk)T dk < 0 can not be checked. Furthermore, the negative noisy gradient
might not be the best descend direction. One alternative possibility is considered
in [34] where CG method is employed to find a better direction. On the other
hand it is well known that second order descent directions, like Newton’s and
quasi-Newton directions, speed up convergence in deterministic problems. But
capturing second order information in stochastic problems is a difficult task.
Quasi-Newton approach, more precisely BFGS method is considered in [26] and
[24] among others while [5] deals with the BFGS method in a slightly different
problem of machine learning programs.

The definition of descent direction we use in this paper is based on the
available gradient values. We say that dk is a descent direction at xk if

GTk dk < 0, (8)

where Gk is the approximation of the gradient defined by

Gk = G(xk) = g(xk) + εk(xk).

The only available function values are noisy,

Fk = Fk(xk) = f(xk) + ξk(xk).

Thus, the line search rule for accepting the step size ak will be

Fk(xk + akdk) ≤ Fk + c1akG
T
k dk, (9)

where dk is a descent search direction at xk.
We consider a combination of two methods here - a descent direction with

line search at the beginning of the iterative procedure and the safe SA step sizes
at the final stages of the procedure. Determining the appropriate switching
point will be the main challenge in the implementation of this approach.

Roughly speaking, we will assume that the relative error in gradient estima-
tion

r =
g(xk)−Gk
‖g(xk)‖

is reasonably small, ‖r‖ ≈ 0 and while ‖Gk‖ > C we believe that we are far away
from a solution. Therefore the noise should not have dominant influence in the
gradient and functional values decrease and the stochastic line search (9) mimics
deterministic behavior. In other words we expect it to generate large steps and
approach a solution’s neighborhood fast. Once we reach some small neighbor-
hood of the solution, say when ‖x− x∗‖ ≤ ε there is no more reason to believe
that the line search (9) generates good steps. In fact the Armijo-type condition
(9) does not mean real progress since the noise might have significant influence

6



on the estimates Fk, Fk(xk + akdk), Gk. Furthermore, the estimates in con-
secutive iterations are calculated using different samples and therefore,
dk obtained with one sample set is not likely to be "strong" enough descent
direction so the Armijo-type condition is not meaningful anymore. At that mo-
ment we switch to the safe but slow SA method with descent direction and the
step sizes satisfying (5).

The algorithm for the Descent Stochastic Line Search (DSLS) method is
given as follows.

Algorithm DSLS
Input parameters: x0 ∈ Rn, c1 ∈ (0, 1), C, δ(C) > 0 and {ak} ∈ R such that

(5) holds. Set k = 0, phase = 1.

Step 1 Take dk such that (8) holds.

Step 2 Select a step size ak.

Step 3 Define the new iterate xk+1 = xk + akdk.

Step 4 Set k = k + 1 and go to Step 1.

Clearly, Step 2 will determine the behavior of the algorithm and need to be
specified. We apply the line search rule (9) as long as the gradient estimate
is large enough. After that we switch to the predefined SA steps, as specified
below.

Step size selection

Step 2

Step 2.1 If phase = 1 go to Step 2.2. Else go to Step 2.3
Step 2.2 If ‖Gk‖ ≥ C choose ak > δ(C) such that the inequality (9) is satisfied.

Go to Step 3. Else set phase = 2.

Step 2.3 Take ak from the predefined gain sequence.

4 Convergence results
Let us first establish the convergence of descent direction method with SA step
sizes i.e. for a given xk the next iterate xk+1 is

xk+1 = xk + akdk, k = 0, 1, . . . , (10)

where dk is a descent direction defined by (8) and the gain sequence {ak} satisfies
conditions (5). Similar problem is studied by Bertsekas and Tsitsiklis [2], where
the iterative sequence is obtained through

xk+1 = xk + ak(sk + wk).

Here, wk is either deterministic error bounded by ‖wk‖ ≤ ak(p +
q‖g(xk)‖) for some positive scalars p and q, or is stochastic error with

7



zero mean and satisfying E[‖wk‖2|Fk] ≤ A(1 +‖g(xk)‖2), for some A > 0.
The convergence conditions include the assumption that sk is gradient related
in the sense that

c1‖g(xk)‖2 ≤ −g(xk)T sk, ‖sk‖ ≤ c2(1 + ‖g(xk)‖).

The result we prove below claims a.s. convergence under the set of assumptions
that are closely related to the SA standard set of assumptions, A1-A3.

Let {xk} be a sequence generated by (10). For any k ≥ 0, denote with Fk
the σ-algebra generated by iterations x0, x1, ..., xk. The following assumptions
A4-A5 are used instead of assumption A1, and together with assumptions A2-
A3 provide the almost sure convergence of the descent direction method (10)
with the SA step sizes.

A4 Direction dk satisfies the following inequality

(xk − x∗)TE[dk|Fk] ≤ −c2‖xk − x∗‖ a.s. for all k,

where c2 > 0 is a constant.

A5 There exists c3 > 0 such that for all k we have

‖dk‖ ≤ c3‖Gk‖ a.s.

The assumption A4 limits the influence of noise on dk and is analogous to
Assumption C4 used in [24]. If we take dk = −Gk, then A2 implies that A4
is satisfied if there is a constant c2 > 0 such that (xk − x∗)T gk ≥ c2‖xk −
x∗‖ a.s. for all k. On the other hand the assumption A5 connects the available
noisy gradient and descent direction. Clearly, taking dk = −Gk we get that A5
is satisfied with any c3 ≥ 1.

The following result from [21] is needed for the convergence proof below.

Theorem 4.1 [21] If Un, βn, ξn and ζn, n = 1, 2, ... are nonnegative Fn-measurable
random variables such that

E(Un+1|Fn) ≤ (1 + βn)Un + ξn − ζn, n = 1, 2, ...

then on the set
{∑

n βn < +∞,
∑
n ξn < +∞

}
, Un converges a.s. to a random

variable and
∑
n ζn < +∞ a.s.

Now, we can state and prove the following convergence theorem for the
descent direction method with the SA step sizes (10).

Theorem 4.2 Let A2-A5 hold and {xk} be a sequence generated by (10). Then
xk → x∗ a.s.

8



Proof. From xk+1 = xk + akdk and assumptions A4 and A5 we have

E[‖xk+1 − x∗‖2|Fk] = E[‖xk + akdk − x∗‖2|Fk]

= ‖xk − x∗‖2 + 2ak(xk − x∗)TE[dk|Fk] + a2kE[‖dk‖2|Fk]

≤ ‖xk − x∗‖2 − 2c2ak‖xk − x∗‖+ c23a
2
kE[‖Gk‖2|Fk]

Given that Gk = gk + εk assumptions A2 and A3 imply

E[‖Gk‖2|Fk] = E[‖gk + εk‖2|Fk]

= ‖gk‖2 + 2gTk E[εk|Fk] + E[‖εk‖2|Fk]

= ‖gk‖2 + E[‖εk‖2|Fk]

< c(1 + ‖xk − x∗‖2)

So,

E[‖xk+1 − x∗‖2|Fk] ≤ ‖xk − x∗‖2 − 2c2ak‖xk − x∗‖+ c23a
2
kE[‖Gk‖2|Fk]

< ‖xk − x∗‖2 − 2c2ak‖xk − x∗‖+ cc23a
2
k(1 + ‖xk − x∗‖2)

= (1 + cc23a
2
k)‖xk − x∗‖2 − 2c2ak‖xk − x∗‖+ cc23a

2
k

Denote by Un = ‖xn − x∗‖2, βn = cc23a
2
n, ξn = cc23a

2
n and ζn = 2c2an‖xn −

x∗‖, then
∑
k a

2
k = ∞ imply

∑
n βn < ∞ and

∑
n ξn < ∞. Theorem 4.1

yields that Un converges a.s. to a random variable and
∑
n ζn < ∞.

Thus an‖xn − x∗‖ → 0 a.s. Given that
∑
n an =∞ there follows

‖xk − x∗‖ → 0 a.s.

Consequently xk → x∗ a.s.

Now, let {xk} be a sequence generated by Algorithm DSLS. For any k ≥ 0,
denote by Fk the σ-algebra generated by iterations x0, x1, ..., xk.

The convergence conditions for line-search method include the Lipschitz con-
dition on the gradient of objective function. Therefore the assumption A6 is
necessary for the convergence of the proposed DSLS method.

A6 The gradient g is Lipschitz continuous, that is there exists a positive con-
stant L such that

‖g(x)− g(y)‖ ≤ L‖x− y|| for all x, y ∈ Rn.

An additional assumption which bounds the realized noise is needed. Notice
that this assumption does not imply any restriction on real problems.

A7 Observation noises are bounded and there exists a positive constant M
such that

‖ξk(x)‖ ≤M, ‖εk(x)‖ ≤M a.s.

for all k and x ∈ D.

9



Given that the DSLS method is based on descent direction line search ap-
proach, two additional assumptions A8-A9, common to the descent direction
method in deterministic optimization [11], are necessary.

A8 There exists δ > 0 such that for all k we have

GTk dk ≤ −δ‖Gk‖‖dk‖ a.s.

A9 There exists ∆ ∈ (0,∆) such that for all k we have

‖dk‖ ≥ ∆ a.s.

The first theorem below shows that Algorithm DSLS is well defined and the
second theorem shows that Algorithm DSLS generates finitely many step sizes
that satisfy the line search rule (9). Their proofs are conceptually similar to
the corresponding proofs in [15] with some technical differences. We include the
proofs here for the sake of completeness.

Theorem 4.3 Suppose that A5-A8 hold. Let

C ≥ M + 2
√

2ML+ 1

δ(1− c1)
.

Then there exists δ(C) > 0 a.s. such that Algorithm DSLS is well defined.

Proof. Denote by fk and gk the objective function and gradient values at
x = xk respectively. Let α > 0 and d ∈ Rn be arbitrary. Then

f(xk + αd) = fk + αg(xk + tαd)T d

= fk + αg(xk + tαd)T d+ αgTk d− αgTk d
= fk + αgTk d+ α(g(xk + tαd)− gk)T d

≤ fk + αgTk d+ α‖g(xk + tαd)− gk‖ · ‖d‖

for some t ∈ (0, 1). The assumption A6 and t ∈ (0, 1) imply

f(xk + αd) ≤ fk + αgTk d+ α2L‖d‖2.

Since f and g are subject to noise we have

Fk(xk + αdk) = f(xk + αdk) + ξ̃k,

Fk = fk + ξk and Gk = gk + εk,

where the abbreviation ξ̃k = ξk(xk + αdk) is used.
Taking d = dk we have

F (xk + αdk) = f(xk + αdk) + ξ̃k
≤ fk + αgTk dk + α2L‖dk‖2 + ξ̃k
= Fk + αGTk dk − αεTk dk + α2L‖dk‖2 + ξ̃k − ξk
≤ Fk + αGTk dk + αM‖dk‖+ α2L‖dk‖2 + 2M.a.s.

(11)

10



So we need to show that a.s. there exists δ(C) > 0 and α > δ(C) such that for
α ∈ (δ(C), α) we have

Fk + αGTk dk + αM‖dk‖+ α2L‖dk‖2 + 2M ≤ Fk + c1αG
T
k dk, (12)

which is equivalent to

α(1− c1)GTk dk + αM‖dk‖+ α2L‖dk‖2 + 2M ≤ 0.

The assumption A8 implies

α(1− c1)GTk dk + αM‖dk‖+ α2L‖dk‖2 + 2M

≤ α2L‖dk‖2 − δα(1− c1)‖Gk‖‖dk‖+ αM‖dk‖+ 2M,

so the statement will be proved analyzing the quadratic function

φ(α) = α2L‖dk‖2 − δα(1− c1)‖Gk‖‖dk‖+ αM‖dk‖+ 2M.

Defining
Aφ = L‖dk‖2 > 0,

Bφ = −δ(1− c1)‖Gk‖‖dk‖+M‖dk‖ < 0,

Cφ = 2M > 0,

we want to prove that B2
φ− 4AφCφ > 0. That can be done analyzing the zeroes

of another quadratic function

ψ(u) = δ2(1− c1)2u2 − 2δM(1− c1)u+M2 − 8ML.

There exist u1, u2 ∈ R, u1 < u2, ψ(u1) = ψ(u2) = 0, and ψ(u) > 0 for u > u2,
where

u2 =
2δM(1− c1) +

√
32δ2(1− c1)2ML

2δ2(1− c1)2
=
M + 2

√
2ML

δ(1− c1)
.

As ‖Gk‖ ≥ C > u2 we conclude that B2
φ − 4AφCφ > 0 is fulfilled and hence the

function φ(α) has two real zeros

α1 =
−Bφ −

√
B2
φ − 4AφCφ

2Aφ
and α2 =

−Bφ +
√
B2
φ − 4AφCφ

2Aφ

and the statement (12) is true for any α ∈ (α1, α2). Let us also note that
0 < α1 < − Bφ

2Aφ
< α2.

Now, let us show that (12) is fulfilled for α uniformly bounded from below. It
is sufficient to find a lower bound α > 0 independent of k such that − Bφ

2Aφ
≥ α.

From the assumption A5 we have

− Bφ
2Aφ

=
δ(1− c1)‖Gk‖ −M

2L‖dk‖
≥ δ(1− c1)‖Gk‖ −M

2Lc3‖Gk‖
.

11



Since ‖Gk‖ ≥ C > 0,

δ(1− c1)‖Gk‖ −M
2Lc3‖Gk‖

=
δ(1− c1)−M/‖Gk‖

2Lc3
≥ δ(1− c1)−M/C

2Lc3
,

and from C ≥ M+2
√
2ML+1

δ(1−c1) we have

δ(1− c1)−M/C

2Lc3
≥ δ(1− c1)(2

√
2ML+ 1)

2Lc3(M + 2
√

2ML+ 1)
.

thus we can take

α =
δ(1− c1)(2

√
2ML+ 1)

2Lc3(M + 2
√

2ML+ 1)
.

So we can conclude that for δ(C) = max{α1, α} we can a.s. take ak ∈
(δ(C), α2) such that (12) is valid and ak is uniformly bounded from below a.s.

Let us now prove that Algorithm DSLS eventually ends up with the SA
steps.

Theorem 4.4 Let A6-A9 hold and take

C ≥ max{2M + 1

αc1δ∆
,
M + 2

√
2ML+ 1

δ(1− c1)
},

α =
δ(1− c1)(2

√
2ML+ 1)

2Lc3(M + 2
√

2ML+ 1)

Let {xk} be an infinite sequence generated by Algorithm DSLS. Let {xj}, j ∈ J
be a subsequence such that

‖Gj‖ ≥ C. (13)

Then {xj} is finite a.s

Proof. Let us assume the contrary i.e. the sequence {xj} is infinite. If (13) is
satisfied then we have that

‖Gj‖ ≥
M + 2

√
2ML+ 1

δ(1− c1)

and Theorem 4.3 implies that for any j ∈ J the next iterative point xj+1 is
obtained a.s. by the line-search rule such that

Fj(xj+1) ≤ Fj(xj) + c1ajG
T
j dj , xj+1 = xj + ajdj , aj > δ(C) ≥ α.

Further more all the previous points are also obtained a.s. by the line-search
rule and thus

Fi(xi+1) ≤ Fi(xi) + c1aiG
T
i di, ai > α, i = 0, 1, . . . , j.

12



Since
Fi(xi+1) = f(xi+1) + ξ̃i, Fi(xi) = f(xi) + ξi,

ξi − ξ̃i ≤ 2M a.s., ai > α, ‖Gi‖ ≥ C we have

f(xi+1) ≤ f(xi) + c1aiG
T
i di + ξi − ξ̃i

< f(xi)− c1δαC∆ + 2M a.s.
(14)

Take K = c1δαC∆− 2M > 0. Clearly

f(xi+1) < f(xi)−K, i = 0, 1, 2, . . . , j.

Summing up the above inequalities for an arbitrary j ∈ J , we have

j∑
i=0

f(xi+1) <

j∑
i=0

f(xi)−
j∑
i=0

K

and

f(xj+1)− f(x0) < −
j∑
i=0

K,

which implies
j∑
i=0

K < f(x0)− f(xj+1) ≤ K1

since the function f is bounded from below. As K > 0, we have

j + 1 < K1/K = K2.

for arbitrary j ∈ J . This is contrary to the assumption that the sequence
{xj}, j ∈ J is infinite so the statement is proved.

Now, we can state the main convergence theorem for DSLS method based
on the previous theorems.

Theorem 4.5 Suppose that assumptions A2-A9 hold. Let

C ≥ max{2M + 1

αc1δ∆
,
M + 2

√
2ML+ 1

δ(1− c1)
},

α =
δ(1− c1)(2

√
2ML+ 1)

2Lc3(M + 2
√

2ML+ 1)

Let {xk} be an infinite sequence generated by Algorithm DSLS. Then xk con-
verges a.s. to x∗.

Proof. From Theorem 4.4 we have that almost surely there are only finitely
many step sizes that satisfy the stochastic line search rule (9). So, Algorithm
DSLS generates infinitely many successive step sizes that satisfy conditions (5)
and due to Theorem 4.2 we have that xk → x∗ a.s.

13



5 Numerical Experiments
We are interested here in computational implementation of Algorithm DSLS
assuming that the problem we are solving is (1) and that the noisy values of
the objective function and the gradient are calculated as the sample average
approximation. In other words for given i.i.d. samples {ξk} and {εk} we assume
that

Fk = F (xk) =
1

p

p∑
i=1

F (xk, ξki), Gk = ∇F (xk, εki)

where p is a reasonably small number and the samples used in each iteration
are independent.

5.1 Computational Implementation
In practical implementation of Algorithm DSLS several issues need to be speci-
fied. First of all, the convergence results proved in the previous Section depend
on the constant C that actually determines the switching point between the
two phases of Algorithm DSLS. Given that C depends on the Lipschitz con-
stant L and the realized noise bound M, it is clear that in general we can not
estimate C with reasonable precision. The second issue we are interested in is
the implementation of a second-order direction, mainly an efficient implemen-
tation of Quasi-Newton directions in noisy environment. Finally the SA gain
sequence can be defined in many ways and the behavior of the algorithm DSLS
depends on that sequence as well. The implementation we tested is sketched as
a pseudocode in Procedure DSLS below.

As common in stochastic optimization the main exit criteria for the algorithm
is the budget for function evaluation. This exit criteria motivates the definition
of switching point. The classical line search procedure based on interpolation,
[18, 10] is applied within each iteration with a limited number of trial step
lengths. If the number of maximal trial step lengths is exhausted without a
satisfactory step length we conclude that the line search is not successful any
more i.e. that the switching point is reached and the method switches to the
SA step lengths. The pseudo code is listed in Procedure LS below. The input
and output parameters are discussed later on.

The SA step lengths we use are

ak =
a

(k + 1 +A)α
, (15)

where parameters are fine tuned to a = 1, A = 0, α = 0.602, as in [25].
The remaining question is the implementation of Quasi-Newton directions.

We consider two directions, BFGS and SR1 obtained as

dk = −B−1k Gk.

Thus for given xk, xk+1 the BFGS update is

Bk+1 = Bk −
Bkδkδ

T
k Bk

δTk Bkδk
+

∆k∆T
k

∆T
k δk

, (16)

14



where
δk = xk+1 − xk, ∆k = Gk+1 −Gk,

and the SR1 update is

Bk+1 = Bk +
(∆k −Bkδk)(∆k −Bkδk)T

(∆k −Bkδk)T δk
. (17)

Both of the considered QN directions are known for their good performance
and exhibit super linear convergence if implemented with a suitable line search.
However, in the noisy environment several issues might arise. The most impor-
tant is perhaps the calculation of ∆k. If we take

∆k = G(xk+1, εk+1)−G(xk, εk)

then the noise terms are interfering with the difference in gradients and might
yield very inaccurate and unstable information. One possible remedy is proposed
in [24] where the update is taken with weights that limit the influence of noise.
Other possibility that we adopted here is successfully tested in [26]. The main
point is to compute the gradient difference ∆k using the same sample set. Such
computation of ∆k clearly doubles the number of gradient calculations but the
experiments we performed clearly indicated that the additional computation is
well spent. Thus in both updates, BFGS and SR1 we compute

∆k = G(xk+1, εk)−G(xk, εk). (18)

The pseudo code of the update procedure is given in Procedures updateBFGS
and updateSR1.

The input parameters of Procedure DSLS are the initial values x0, F0, G0

denote by x, Fx, Gx respectively and three parameters: itnlimit,maxfcalcls
and maxfcalc. These parameters are the maximal number of iterations, the
maximal number of trial step lengths within the line search procedure and the
budget for function evaluation within the whole iterative procedure. As already
mentioned, maxfcalcls is in fact used to determine the switching point. The
parameter near in DSLS procedure is false while we try to find the step length
by the line search procedure. Once it takes the value true the algorithm switches
to the SA step lengths. In the notation of Algorithm DSLS, this corresponds
to setting phase = 2 in Step 2.2. The exit parameters are the final iteration
xend and the function and gradient values Fend and Gend, denoted by y, Fy and
Gy, as well are the termination code termcode. The termination code stops the
algorithms as follows:

• termcode = 1 if the gradient value is small enough, ‖Gk‖ ≤ gradtol;

• termcode = 2 if the maximal number of function evaluations is reached.

Thus the algorithm stops with xend either if we reach a stationary point or if
the maximal number of function evaluations is used.

15



Procedure: DSLS
Input: x ∈ Rn, F : Rn → R, G : Rn → Rn, itnlimit ∈ Z,

maxfcalcls ∈ Z, maxfcalc ∈ Z
Output: y ∈ Rn, Fy ∈ R, Gy ∈ Rn, termcode ∈ Z
initiate_variables;

termcode := 0; [Gx, zx] := G(x); % remember the noise zx
near := false; % when testing SA steps put near := true here

if ¬near then Fx := F (x);
for itncount := 1 to itnlimit do

d := find_direction;

if ¬near then
[y, Fy, retcode, λ, fcalcls] := LS(x, Fx, F (·), Gx, d,maxfcalcls);
if retcode = 2 then % fcalcls ≥ maxfcalcls, switch to SA

near := true;
λ := a/(itncount+ 1 +A)α;

else if retcode = 1 then % too small step
λ := λminfix;

end
else

λ := a/(itncount+ 1 +A)α;
end

y := x+ λ ∗ d;
[Gy, zy] := G(y); % find the gradient and remember the noise

if |Gy| ≤ gradtol then
termcode := 1; return;

else if number_of_function_calculations ≥ maxfcalc then
termcode := 2; return;

else
update_quasi_Newton; % Not needed with GRAD directions

x := y; Gx := Gy; zx := zy ; % prepare for next iteration
if ¬near then Fx := Fy;

end
end
return;

16



The line search procedure input parameters are the current values xk, Fk,
Gk, dk denoted by x, F , G, d, the function F (·, ξk+1) denoted by F̂ and the
parameters maxstep, steptol and maxfcalcls. The role of maxfcalcls is already
explained, maxstep is the maximal allowed step length and steptol is a scaling
parameter. The output parameters are the new iteration y = xk+1 and the
objective function value Fy = Fk+1, the parameter retcode, the step size λ = ak
and the number of function evaluations used in the line search procedure fcalcls.
The parameter retcode can have the following values:

• retcode = 0 - xk+1 satisfying the Armijo condition is found

• retcode = 1 - unable to find xk+1 satisfying Armijo condition and suffi-
ciently distinct from xk

• retcode = 2 - maximal allowed number of function evaluations reached
not giving xk+1 that satisfies Armijo condition

The case retcode = 1 might be a consequence of the noise. In that case we con-
tinue with the iteration regardless of the Armijo condition taking the predefined
minimal step size λminfix in Procedure DSLS.

Both QN directions are implemented with the difference in gradients cal-
culated using (18). In the absence of noise BFGS Hessian approximation is
generating descent directions and has the so-called self-correction property. In
other words, BFGS tends to correct bad approximations of the Hessian and it
is reasonable to expect that after one bad approximation the method itself will
correct the update, if combined with well defined line search. An additional
care is necessary if the noise is present as we may face singularity due to a
particularly bad sample. Therefore we skip the update if |∆kδk| < safeguard
in order to prevent the accumulation of errors due to small values of ∆kδk. The
safeguard parameter is initialized within Procedure initiate_variables as eps1/4
where eps is the machine precision. The another variable to be initiated within
this procedure is the initial QN approximation taken as the identity matrix.

5.2 Numerical Results
There are two questions we are interested in here. First one is to test the
efficiency of the algorithm proposed here i.e. to test the efficiency of the line
search at the initial phase of the iterative methods. Thus, we compare the
methods defined by Algorithm DSLS and the SA method (10) with the same
direction. The second question is the relationship between the negative gradient
direction and second order directions, in particular the BFGS and SR1 directions
implemented as described above. So, we are reporting the results for 6 different
methods. In all SA methods the gain sequence is given by (15) as well as in the
second phase of LS methods.

SA-G - the SA method (10) with dk = −Gk.

LS-G - the method defined by Algorithm DSLS and dk = −Gk;

17



Procedure: LS
Input: x ∈ Rn, Fx ∈ R, F : Rn → R, Gx ∈ Rn, d ∈ Rn, maxstep ∈ R,

steptol ∈ R, maxfcalcls ∈ Z
Output: y ∈ Rn, Fy ∈ R, retcode ∈ Z, λ ∈ R+, fcalcls ∈ Z
if |d| > maxstep then d := d ∗maxstep/|d|;

initslope := GT d;

rellength := max
i

|d[i]|
max(x[i], 1)

; λmin :=
steptol

rellength
;

retcode := 3; fcalcls := 0; α := 1E − 4; λ := 1;
while retcode > 2 do

y := x+ λ d;
Fy := F (y); % calculated using new p size sample
fcalcls := fcalcls+ p;
if y ≤ x+ α λ initslope then % satisfactory λ

retcode := 0;
else if λ < λmin then % too small λ

retcode := 1; y := x; Fy := Fx;
else if fcalcls ≥ maxfcalcls then % maxfcalcls reached

retcode := 2;
y := x+ λ d; % returned value y is not valid now

else % we iterate
if λ = 1 then % quadratic fit

λtemp := − initslope
2(Fy−Fx−initslope) ;

else % cubic fit[
a
b

]
:= 1

λ−λprev

[
1
λ2

−1
λ2
prev

−λprev
λ2

λ
λ2
prev

]
∗
[

Fy − Fx − λ initslope
Fprev − Fx − λprev initslope

]
;

disc := b2 − 3 a initslope;
if a = 0 then λtemp := − initslope2b ;
else λtemp := −b+

√
disc

3a ;
if λtemp > 0.5λ then λtemp := 0.5λ;

end
λprev := λ; Fprev := Fy;
if λtemp ≤ 0.1λ then λ := 0.1λ;
else λ := λtemp;

end
end
return;

18



Procedure: initiate_variables
B := I; % starting with the identity matrix
safeguard := eps(1/4); % treshold for QN singularity
maxstep := max(|x|, 1); % for LS
steptol := eps(2/3); % for λmin in LS
return;

Procedure: updateBFGS
G′y := G(y, zx); % find the gradient using old noise

δ := y − x; ∆ := G′y −Gx;
if |∆T δ| ≥ safeguard then % no division by zero

if itncount = 1 then B :=
∆∆T

∆T δ
I;

B := B − BδδTB

δTBδ
+

∆∆T

∆T δ
;

end
return;

Procedure: updateSR1
G′y := G(y, zx); % find the gradient using old noise

δ := y − x; ∆ := G′y −Gx;
if |(∆−Bδ)T δ| ≥ safeguard |δ| |Bδ| then % no division by zero

B := B +
(∆−Bδ)(∆−Bδ)T

(∆−Bδ)T δ
;

end
return;

19



SA-BFGS - the SA method (10) with BFGS dk;

LS-BFGS - the method defined by Algorithm DSLS and BFGS direction dk;

SA-SR1 - the SA method (10) with SR1 dk;

LS-SR1 - the method defined by Algorithm DSLS and SR1 direction dk.

The test collection we considered consists of problems taken from the col-
lection of J. Burkhardt, at http://people.sc.fsu.edu/~jburkardt/m_src/
test_opt/test_opt.html, [6] and four additional problems tested in [24], [16]
and [19].

The collection in [6] consists of 43 problems, mainly described in [17], in the
form of nonlinear least squares,

min f(x) =

m∑
i=1

f2i (x).

The problems 4,10 and 11 are excluded as all tested algorithms failed on these
three problems. The original problems are transformed into noisy ones adding
the noise at the objective function and the gradient in the form

ξ(x) = u, u ∼ N (0, σ2), ε(x) = v, v ∼ N (0, σ2In×n),

where In×n is the identity matrix. The initial approximations are taken as in
[6].

The additional four problems are given below.
Problem 1, [24]

f(x) = xTATx+ 0.1

n∑
i=1

(Ax)3i + 0.01

n∑
i=1

(Ax)4i

where A is n × n upper triangular matrix of ones. The initial point is x0 =
0.2(1, 1, . . . , 1) and the minimizer is x∗ = (0, 0, . . . 0), f(x∗) = 0.
Problem 2, [16].

f(x) = 200 φb(x1, x2)/φb(10, 10)

where

φb(x1, x2) = exp

(
0.1
√
x21 + bx22

)
+ exp

(
−0.1

√
x21 + bx22

)
− 2.

The initial point is x0 = 0.5(1, 1) and the minimizer is x∗ = (0, 0), f(x∗) = 0
(b = 1).

The noise term for both Problems 1 and 2 is added as

ξ(x) = [xT , 1] z, where z ∼ N (0, σ2I(n+1)×(n+1)),

ε(x) = z, where z ∼ N (0, σ2In×n).

20



Problem 3, [19]

f(x) =

n∑
i=1

(exi − xi), x = (x1, ..., xn).

The initial point is x0 = (1/n, ..., i/n, ..., 1) and the minimiser is x∗ =
(0, ..., 0), f∗ = n.
Problem 4, [19]

f(x) =

n∑
i=1

i
10 (exi − xi), x = (x1, ..., xn).

The initial iteration is x0 = (1, ..., 1) and the minimiser is x∗ = (0, ..., 0), f∗ =
n(n+1)

20 .
Problems 3 and 4 are modified adding the noise like in the problems from

[6],
ξ(x) = u, u ∼ N (0, σ2), ε(x) = v, v ∼ N (0, σ2In×n).

Different level of noise are tested and here we report results obtained for
σ = 1, σ = 0.2 and σ = 0.04. In each experiment we made N = 50 independent
runs starting from the same initial point. The itnlimit value set to ∞ and the
maximal number of function evaluations is maxfcalc = 200n. The parameter
maxfcalcls = 4 is used so the line search procedure contains at most 4 function
evaluations. Each gradient evaluation is counted as n function evaluations. In
all calculations we have used the sample size p = 3 for the sample average
approximation of the objective function and the gradient.

The exit parameters for all algorithms are

gradtol = min{
√
nσ, 1}

and the maximal number of function evaluations

maxfcalc = 200n.

If a method stops due to ‖Gend‖ ≤ gradtol we consider the run successful. The
number of successful runs is denoted by Nconv. If

‖Gend‖ > 200
√
n

we declare divergence. The number of divergent runs is denoted by Ndiv. Fi-
nally the runs which stopped due to reaching the maximal number of allowed
function evaluations are considered partially successful and their number is de-
noted by Npar. Our conjecture is that in such cases maxfcalc was not large
enough to achieve convergence with the given gradtol but the function values is
nevertheless decreased so the algorithm made some progress. In total we have
2200 runs of each algorithm and we report the percentage of Nconv,Npar and
Ndiv for all three noise levels at Figure 1.

21



0 10 20 30 40 50 60 70 80 90 100

LS−SR1

SA−SR1

LS−BFGS

SA−BFGS

LS−G

SA−G

Percentage of 50 trials on 44 problems

 

 

Nconv
Npar
Ndiv

0 10 20 30 40 50 60 70 80 90 100

LS−SR1

SA−SR1

LS−BFGS

SA−BFGS

LS−G

SA−G

Percentage of 50 trials on 44 problems

 

 

Nconv
Npar
Ndiv

a. σ = 1 b. σ = 0.2

0 10 20 30 40 50 60 70 80 90 100

LS−SR1

SA−SR1

LS−BFGS

SA−BFGS

LS−G

SA−G

Percentage of 50 trials on 44 problems

 

 

Nconv
Npar
Ndiv

c. σ = 0.04

Figure 1: Percentage of successful, partially successful and divergent runs

The results shown at Figures 1 clearly demonstrate that Algorithm DSLS
have significantly smaller number of divergent runs with respect to the corre-
sponding SA methods regardless of the direction for all noise levels. Further-
more, the second order directions, BFGS and SR1 are significantly better than
the negative gradient directions in both approaches, within the SA and DSDS
algorithms. DSLS algorithm with the BFGS direction appears to be the most
successful for all three noise levels.

At Figure 2 we report the performance profiles, [8]. The performance mea-
sure is the average number of function evaluations needed in convergent and
partially successful runs normalized to include the problem dimension i.e.

fcij =
1

|NconijUNparij |
∑

r∈NconijUNparij

fcalcrij
nj

,

where fcalcrij is the the number of function evaluations spent by the method i
to solve the problem j in r-th run, nj is the dimension of the j-th problem, and
Nconij and Nparij are convergent and partially successful runs for the method
i to solve the problem j respectively.

22



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile

 

 

SA−G
LS−G
SA−BFGS
LS−BFGS
SA−SR1
LS−SR1

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile

 

 

SA−G
LS−G
SA−BFGS
LS−BFGS
SA−SR1
LS−SR1

a. σ = 1 b. σ = 0.2

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile

 

 

SA−G
LS−G
SA−BFGS
LS−BFGS
SA−SR1
LS−SR1

c. σ = 0.04

Figure 2: Performance profiles for all 6 methods

The performance profile clearly indicate clustering of SA methods and DSLS
methods with DSLS being significantly better. The difference appears to be
more obvious for larger values of σ. Among DSLS methods BFGS and SR1 per-
form better that the negative gradient method as expected so the second order
information decreases the number of function evaluations. We can conclude that
both considered measures, the number of function evaluations and the number
of successful runs demonstrate the advantages of the algorithm proposed in this
paper.

Acknolegements. We are grateful to the anonymous referees and the as-
sociate editor for their constructive comments which helped us to improve this
paper.

23



References
[1] A.S. Bandeira, K. Scheinberg, L.N. Vicente, Convergence of trust

region methods based on probabilistic methods, SIAM Journal on
Optimization, 24 (2014) 1238-1264.

[2] D. P. Bertsekas, J. N. Tsitsiklis, Gradient convergence in gradient methods
with errors, SIAM J. Optim., Vol. 10, No. 3 (2000), pp.627-642

[3] R. H. Byrd, G. M. Chin, W. Neveitt, J. Nocedal, On the Use of Stochastic
Hessian Information in Optimization Methods for Machine Learning, SIAM
J. Optim., 21 (3), (2011) pp. 977-995.

[4] R. H. Byrd, G. M. Chin, J. Nocedal, Y. Wu, Sample size selection in
optimization methods for machine learning, Math. Program. 134(1), (2012)
pp. 127-155.

[5] R. H. Byrd, S. L. Hansen, J. Nocedal, Y. Singer, A Stochastic
Quasi-Newton Method for Large-Scale Optimization, Technical report,
arXiv:1401.7020 [math.OC].

[6] J. Burkhardt, TEST_OPT, http://people.sc.fsu.edu/~jburkardt/m_
src/test_opt/test_opt.html

[7] H.-F. Chen, Stochastic Approximation and Its Application, Kluwer Aca-
demic Publishers, New York, 2002

[8] E. D. Dolan, J. J. Moré, Benchmarking optimization software with perfor-
mance profiles, Math. Program., Ser. A, Vol. 91 (2002), pp.201-213

[9] B. Delyon, A. Juditsky, Accelerated stochastic approximation, SIAM J. Op-
tim., Vol. 3, No. 4 (1993), pp.868-881

[10] J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ,
1983.

[11] M. A. Diniz-Ehrhardt, J. M. Martinez, M. Raydan, A derivative free non-
monotone line-search technique for unconstrained optimization, J. Comp.
Appl. Math., Vol.219, No.2 (2008), pp.389-397

[12] S. Gratton, C.W. Royer, L.N. Vicente, Z. Zhang, Direct search
based on probabilistic descent, preprint 11-14, Department of
Mathematics, University of Coimbra.

[13] H. T. Fang, H. F. Chen, Almost surely convergent global optimization al-
gorirhm using noise-corrupted observations, J. Optim. Theory Appl., 104,2
(2000), pp.343-376

[14] H. Kesten, Accelerated stochastic approximation, Ann. Math. Stat., 29
(1958), pp.41-59

24



[15] N. Krejić Z. Lužanin, I. Stojkovska , A gradient method for unconstrained
optimization in noisy environment, Appl. Numer. Math. 70 (2013) 1-21.

[16] M. N. Levy, M. W. Trosset, R. R. Kincaid, Quasi-Newton methods for
stochastic optimization, Proceedings of the Fourth Symposium on Uncer-
tainty Modeling and Analysis (ISUMA ’03), 2003.

[17] J. J. Moré, B. S. Garbow, K. E. Hillstrom, Testing Unconstrained Opti-
mization Software, ACM Trans. Math. Soft., Vol. 7, No. 1 (1981), pp.17-41

[18] J. Nocedal, S. J. Wright, Numerical Optimization, Springer-Verlag, New
York, 1999

[19] M. Raydan, The Barzilai and Borwein Gradient Method for the Large Scale
Unconstrained Minimization Problem. SIAM J. Optim. Vol.7 No.1 (1997),
pp. 26-33

[20] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math.
Statist., 22 (1951), pp.400-407

[21] H. Robbins, D. Siegmund, A convergence theorem for nonnegative almost
supermatringales and some applications, Optimizing Methods in Statistics,
Academic Press, New York (1971), pp.233-257

[22] K. Sirlantzis, J. D. Lamb, W. B. Liu, Novel algorithms for noisy minimiza-
tion problems with applications to neural networks training, J. Optim.
Theory Appl., Vol.129, No.2 (2006), pp.325-340

[23] J. C. Spall, An Overview of the Simultaneous Perturbation Method for
Efficient Optimization, John Hopkins Applied Technical Digest, Vol. 19,
No. 4 (1998), pp.482-492.

[24] J. C. Spall, Adaptive stochastic approximation by the simultaneous per-
turbation method, IEEE Trans. Autom. Contr., Vol. 45, No. 10 (2000),
pp.1839-1853

[25] J. C. Spall, Introduction to Stochastic Search and Optimization: Estima-
tion, Simulation, and Control, John Wiley & Sons, Inc., Hoboken, New
Jersey, 2003

[26] N. N. Schraudolph, J.Yu, S. Günter, A Stochastic Quasi-Newton Method
for Online Convex Optimization, Proceedings of 11th International Con-
ference on Artificial Intelligence and Statistics (2007), 433-440.

[27] H. Valpola, J. Karhunen, An Unsupervised Ensemble Learn-
ing Method for Nonlinear Dynamic State-Space Models, Neural
Computation 14(11), (2002) 2647 - 2692.

25



[28] L. Venkataramanan, R. Kuc, F.J. Sigworth, Identification of Hid-
den Markov Models for Ion Channel Currents - Part II: State-
Dependent Excess Noise, IEEE Transactions on Signal Processing
46,7 (1998), 1916-1929.

[29] Y. Wardi, A stochastic steepest-decent algorithm, J. Optim. Theory Appl.,
Vol. 59, No. 2 (1988), pp.307-323

[30] Y. Wardi, Stochastic algorithms with Armijo stepsizes for minimization of
functions, J. Optim. Theory and Appl., Vol. 64, No. 2 (1990), pp.399-417

[31] F. Yousefian, A. Nedic, U.V. Shanbhag, On stochastic gradient and subgra-
dient methods with adaptive steplength sequences, Automatica 48 (1),2012,
pp. 56-67.

[32] Zi Xu, Yu-H. Dai, A stochastic approximation frame algorith with adaptive
directions, Numer. Math. Theor. Meth. Appl., Vol.1, No.4 (2008), pp.460-
474

[33] Zi Xu, Yu-H. Dai, New stochastic approximation algorithms with adaptive
spet sizes, Optim Lett., Vol.6, No.8 (2012), pp.1831-1846

[34] Zi Xu, A combined direction stochastic approximation algorithm, Opti-
mization Letters, Vol.4, No.1 (2010), pp.117-129

26


